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meromorphic continuation in s to the whole complex plane. If we form a vector
of Eisenstein series, indexed by the cusps, then the vector valued automorphic
form will have a functional equation s — 1 — 5.

3.9 Maass raising and lowering operators

The Maass raising and lowering operators are differential operators found by
[Maass, 1953] which have the property that when they are applied to an auto-
morphic function of weight & as in Definition 3.5.2 then they produce a new
automorphic function whose weight is either raised or lowered by 2. Without
further ado, let’s define these differential operators.

Definition 3.9.1 (Maass raising operator) Let k € Z. We define the Maass
raising operator Ry to be the differential operator
A

R 8+8+ ( )
A—Ha )a —4,2 2

Definition 3.9.2 (Maass lowering operator) Let k € Z. We define the Maass
lowering operator L, to be the differential operator
d a  k 0k

Ly =iy —t ¥ —— =—g—Ze— =
k J s }a_v 3 ( ")az 3

The following identities may be easily verified.

Lpy=R g Rp=l g 3:9.3)

Ay =—LipR ’ 1 AT Ry 2L i 1 . 394
p=—Lipl—z\1+5 ) =—Reali+5 | 1= 5 (3.94)
Ao Ry = R Ay, Aoy = EpiAg. (3.9.5)

Furthermore, the raising and lowering operators Ry, —L.> are adjoint oper-
ators with respect to the Petersson inner product (see Definition 3.5.5) and
satisfy (see [Roelcke, 1966], [Bump, 1997])

dxdy

ff R f)(2)- g(z) / f@-( LL.(.’Jg)(Z) g‘ (3.9.6)

Co(N\B Ta(N)\b

which can be succinctly written in the form
(R f. 8) = (f, (—Lis28)),

where f € A} » (Fo(\)) and g € A7, . (T'o(N)).
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Proposition 3.9.7 (R, raises weights by 2, L; lowers weights by 2) Fix
k,N € Z (with N = 1) and fix a character x (mod N). Let 'A;x (To(N))
be the C-vector space of automorphic functions of weight k and character x
for To(N) as in Definition 3.5.2. If f € Azf_x (T'o(N)) then

Rif € Apn, (To(N)), Lif € Ap_5 (To(N)). (3.9.8)
Furthermore, if Ay f = Lf for some eigenvalue A € C, then

Apa(Ref) = A(Re f). Apa(Li f) = MLi S)- (3.9.9)

Proof First, note that (3.9.9) follows from (3.9.5).

Next, we will prove that

((ka) |k+2 @) (2) = Rk((ﬂk ) (Z)),
((ka) ez Of) (2) = Lk( (f], @) (z)) (3.9.10)

for any o € I'p(N) and any smooth function f : ) — C.
It is easy to see that (3.9.10) implies (3.9.8). For example, since we assume

that f € Aj  (To(N)), one obtains immediately that (f|k @) (2) = x(d)f(2)
fora = (21) € To(N). Consequently ((Ref) |y, @) () = x(d)(Ref)(@).
We shall now prove (3.9.10) for the Maass raising operator R;. The proof is

very similar for the lowering operator and we leave the details to the reader.
Leta = (‘C’ 3) Using the identity ¢(z — Z) = (cz +d) — (cZ + d), and the
fact that 312 = 0, we compute

(1, 00) = (-0 +5) | (£59) 7 (533))

cz+d % k _ 1 k ) 7 7 ',
_(Cz+d) .[(_Ec(zn).cﬁd § E)f(“*") + (Cz+d)zf(o¢z)]

Z —% cz+d
(cz+d)? \cz+d

i

)2 Plag) + ) Flaz). (3.9.11)

In a similar manner we have
azth

Cz+d L%: _ 8 k
((ka) ’M oz) (Z):(cz+d‘) .((wfw)5;+§) flw) it

= (Cz +d) o (%f(w) +(w- w)f’(w))

,
L
s

azth
czd

(3:9.12)
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One immediately observes that (3.9.11) and (3.9.12) are the same because

az+b az+b z2—32
(w— ) = — = =
w=1t cz+d cz+d (cz+d)*

Proposition 3.9.13 (Action of Maass operators on Whittaker functions)
Letk € Z and let Ry, Ly, be the Maass raising and lowering operators, respec-
tively, as in Definitions 3.9.1, 3.9.2. Let r € R with r > 0. Then the action
of the Maass operators Ry, Ly on the Fourier-Whittaker expansion (Theorem
3.7.4) is given by

Ry ( k 11(4.Tl'.f \) e“‘—m‘") = AW.&{- (47”,‘,) e_;r”\

k — 1 ’ e
LA( kg (411.’\) E"'rn.\) = (U2 o (T) ) Wg:_l‘],(il-ﬂ'r}’) . g2irx

Ifr < 0, the action is given by

; k+1 2 o
RR(WJE-_\,(4H|;'IJ:) : ez’””) el (\P - (T) ) W_se (4mrly) - €7,

LA( g u(4ﬂ'!f‘|\’)€2mn) = —W,"_Ez_l,(‘tn‘”}'J . e2frir.\'.

Proof The proof follows from the Definitions 3.9.1, 3.9.2, and the recurrence
relations (3.6.7) after a routine calculation. [

3.10 The bottom of the spectrum

Fix integers k, N with N = 1, and let x be a Dirichlet character (mod N).
To recapitulate, we have been studying the Hilbert space of smooth functions
f : h — C which transform by

- k
f(‘“b) = x(d)(CHd ) 1@ (3.10.1)

cz+d lcz +d|

for any ( ’!) € To(N) and all z € . We have defined £2 (To(N\D. &, X)

to be the space of all smooth functions satisfying (3.10.1) and the L=

condition
/ [ vor
To(N)\b

< Q.




3.10 The bottom of the spectrum 93

A much simpler space than £? (To(N)\b, k, x) is the space L*(Z\R) con-
sisting of all smooth functions satisfying f(x + 1) = f(x), (Vx € R) together
with the £2 condition fUI | f(x)]*> < oo. We showed in Chapter 1 that every
function in £*(Z\R) has a Fourier expansion f(x) =Y, _; a,e*™"*, so that a
basis for the space is given by the exponential functions e with n € Z. The

d? . .
472 With eigenvalue

exponential function is an eigenfunction of the Laplacian —
dn’n?, ie.,
2
d
dx?
The eigenvalues comprise the spectrum. The bottom of the spectrum is the
smallest eigenvalue. In the case of — % acting on £(Z\R), the bottom of the
spectrum is 0 and this corresponds to the constant eigenfunction.

Similarly, [Selberg, 1956] decomposed the space £ (To(N)\h, k, x)into
2

2minx 2.2 ZFwinx
e_?f“’l.\ = 47_[.‘.'?_ e_Tl’HLl’

eigenfunctions of Ay = —y (:T + aaT) +iky-. Such an eigenfunction f

satisfies the second order partial differential equation
Arf = Af,
where A = A(v) = v(1 — v). This conforms with Definition 3.5.7.

Proposition 3.10.2 (Bottom of the spectrum) Fix integers k and N = 1.
Let x be a Dirichlet character (mod N). The operator Ay acting on the
Hilbert space L* (To(N)\b, k. x) has a self-adjoint extension and is bounded

below by
(Y (W
2" B &)

If there exist elements of L* (To(N)\h, k., x) which have eigenvalue ). (“5—') .

then they are given by yl%l f(z) where f is a holomorphic modular form of
weight k and character y satisfying (3.3.3) if k > 0, or the complex conjugate
of such a function if k < 0.

Proof For a proof of the standard fact that the Laplace operator A has a self-
adjoint extension see [Iwaniec, 2002]. Now, consider a non-zero function f &
L2 (To(N)\b, k, x) satisfying Ay f = uf for some eigenvalue . € C. Since
Ay is a self-adjoint operator with respect to the Petersson inner product (see
Definition 3.5.5) we have

wlfe fy={8eh FY=\F Sf}=HF F)
Because [ # 0, (f, f ) > (it follows that . = ;= € R. To show that the clas-
sical holomorphic modular forms and their conjugates lie at the bottom of the
spectrum, we require the Maass raising and lowering operators Ry, L, defined
in Definitions 3.9.1 and 3.9.2. There is a natural connection between L; and
holomorphic modular forms. Indeed, it follows easily from the expression for
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of N as a sum of three squares can be expressed in terms of class numbers:

12H(N) if N=1or 2 (mod4),

24H@AN) if N=3 (mod8),
(N)=1g if N=7 (mod8),

r(N/4)  if N=0(mod4).

On the other hand, r;(N) is the N-th Fourier coefficient of 0(z)3, where

0z)=Y q" (g=€*"")

teZ

is a modular form of weight one-half; thus one should expect that the function

#@= 3 HNG Ges)

is a modular form of weight 3/2, and then the number H,(N) would be the 4 N-th
Fourier coefficient of the modular form #(z) 8(z) of weight 2.

At the time of appearance of Hecke’s paper, no satisfactory theory of modular
forms of half-integral weight was known; such a theory has now been provided
by Shimura ([33, 34]). However, one still cannot carry out Hecke’s suggestion
directly because, as we shall see, the function 5#(z) does not in fact transform
like a modular form of weight 3/2. For r>1 odd, on the other hand, Cohen

proves that the function Y H(r, N)g" is a modular form of weight r+4 (for

N=0
I;(4)) in the sense of Shimura, namely equal to the linear combination

1-2
’C‘%mflﬁ {d-19) Er+1/2(Z)_ iFr+1/2(Z)}

of the two Eisenstein series

Gl

© o0 r—n_ i

Er+1/2(z)= Z g (mz+n),.+1/2’
1

m=1
modd (n, m)=

!
E+1/2(z)=2-r—1/2Er+1/2 (‘Zz“) )

whose Fourier coefficients were calculated by Shimura in the papers cited.
For r=1 we should like to apply the same idea and show that #(z) is equal
to the linear combination

F(2)= _%{(1—i)E3/2(Z)_iF3/2(Z)} (1)

of the two Eisenstein series of weight 3/2. However, the series defining E, , ;,,(2)
diverges for r=1. To overcome this difficulty, we use the well-known device
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of Hecke [25]: we introduce the series

n\ [— 1\
o e gy )

e (mz+n)Y? imz+n)?
(m,2n)=1

(ze9, se), 2)

which converges absolutely for Re(s)>2 and transforms by

az+b c\ [—1\V/?
b (28] ) 2 sttt

_1 1/2
for (j 2)613(4) (for the definitions of (5), (7) etc. cf. [33])-Thi5 function

is analytic in s, and by analytic continuation we obtain a function
E;;,(2)=E;); ¢(z) which is possibly not holomorphic in z but a least satisfies
the transformation equation of a modular form of weight 3/2. We proceed
similarly for F;,,(z) and then define #(z) by (1). The function #(z) is periodic
of period 1 and hence has a Fourier expansion Y fy e**"?, the coefficients fy
possibly being functions of y=1Im(z). We will calculate these Fourier coefficients
in the next section, finding that the N-th coefficient is equal to H(N) (independent
of y) for N positive and to 0 for N negative except for N= —u?, ueZ. Thus F(2)
is the sum of #°(z) and a certain non-analytic expression involving the powers
g *. In Section 2.3 we construct a theta series of weight 2 which will cancel
the contribution from this non-analytic piece and create the term ) min(4, 1)
in the formula for ¢(N). The proof of Theorem 1 will be completed in Section 2.4.

2.2. The Eisenstein Series of Weight 3

At the end of the last section we defined a function %(z) which transforms under
I;(4) like a modular form of weight 3, and explained a reason for expecting a
relationship between % (z) and the function #(z)=) H(N)q". In this section
we will prove the following result.

Theorem 2. For ze 9, we have

FO=HD+y " Y Bénf2)q-T,

f=—-
where y=1m(z), g =¢(z) and B(x) is defined by

1 o0
li(x)=—~16n§u*3/2e*“du (x=0).
1

Before proving this, we mention two corollaries. The first is a description
of the way #(z) transforms under I;,(4).
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Corollary. For (z Z) ely(4), c*0,

— 1\~ 1/2 : ico
(E) (_) (Cztdp# (az+b) f(ﬂ:lﬂ (1) dt

d/ \ d +d 167 4 (t+2)>%

where 0(t)=) e(f?t) and the integral is taken along a vertical path in the upper
half-plane. f<Z

Indeed, by the theorem,
.9"'(2)—‘;f(z)=—1—y_“2 ]?u‘ 20Qiuy—2) du——-ﬂ iw(z+v)’ 320 (v) dv
l16mn q 167 °; ,
the integral being taken along the vertical path v=2iuy—z, 1 Su<oo. Denote

t._
the latter integral by ¥ (z); then, substituting v=a—ct~%, we find

az+b\ Y az+b at—b \"¥* [ at-b dt
o R ey I e frer:
cz+d] ;\cz+d —ct+d —ct+d/ (ct—d)

—c —1\~ 1/2 dfc
= (—d—) (—d—) (cz+d)** [ (z+0)7320(0)dt,
where in the second line we have used our knowledge of the behaviour of 0(t)
under [ (4). Thus

c\ [—1\"V2 az+b i d
N2 d)- 32 ( > = — )= 32 dt
@) 7)oy () o= T+
The expression on the left, with iy replaced by & is zero because # transforms
under [;,(4) like a modular form of weight 3/2. The Corollary now follows from

1+i

th t .

e identity &F — # = 16nw

We should mention that one result concerning the behaviour of # under

modular transformations was already known, namely the identity

@y () e b= 0]/ Teern 8D ey

found by Eichler [21].

The other consequence of Theorem 2 was pointed out to us by H. Cohen,
namely, a “modular” proof of the Gauss-Hermite formula quoted in Section 2.1.
To see that r;(8 N+ 3)=24 H(8 N + 3), for example, we observe that

SHEN+3)q"=} ¥ e(-3r/8)9f(2;r—r)=l T e(=3r8)F (Z;”),
r(mod 8) r(mod 8)

the terms involving ¢~/ all dropping out because —f? is never congruent to

3 modulo 8. Therefore the function Y’ H(8N +3) 4" is a (holomorphic) modular

form of weight 3/2 for some congruence group (in fact for I;(2)), and since
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Definition 7.3. Assuming the notation and hypotheses in Lemma 7.2, we refer to
=) g
n>>>—oo
as the holomorphic part of f(z), and we refer to
(2 = 3 6 (T (k - 1, 4xnly)q”
n<0

as the non-holomorphic part of f(z).

Remark 17. A harmonic Maass form with trivial non-holomorphic part is a weakly holo-
morphic modular form. We shall make use of this fact as follows. If fi, fo € Hy ¢ (I") are
two harmonic Maass forms with equal non-holomorphic parts, then f; — fo € My, (T').

7.3. The £-operator and period integrals of cusp forms. Harmonic Maass forms are
related to classical modular forms thanks to the properties of differential operators. The
first nontrivial relationship depends on the differential operator

0
7.7 w = 21y" - —.
(7.7) § W
The following lemma'®, which is a straightforward refinement of a proposition of Bruinier
and Funke (see Proposition 3.2 of [63]), shall play a central role throughout this paper.
Lemma 7.4. If f € Hy (N, x), then
527141 : HQ*k(Nv X) - Sk(N7 Y)

s a surjective map. Moreover, assuming the notation in Definition 7.3, we have that
oo
G k(f) = —(@m)F 1Y ¢ (—n)n* g
n=1

Thanks to Lemma 7.4, we are in a position to relate the non-holomorphic parts of
harmonic Maass forms, the expansions

F7() = 3 e ()P (k = 1, dmnly)g”
n<0
with “period integrals” of modular forms. This observation was critical in Zwegers’s work
on Ramanujan’s mock theta functions.
To make this connection, we must relate the Fourier expansion of the cusp form & (f)
with f~(z). This connection is made by applying the simple integral identity

100 2minT
(7.8) / ( .(6 T dr =i(2mn)'F . T'(k — 1, 4mny)q "
=z (—i(t+=

This identity follows by the direct calculation

100 e2minT 100 2min(T—2)
dT/ —— dr = i(2mn) R T (k — 1, 4mny) ¢
/—z (—i(1 +2))°" oiy (—1T)%7F (2mm) ( y)a

5The formula for £5_j(f) corrects a typographical error in [63).
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In this way, we may think of the non-holomorphic parts of weight 2 — £ harmonic Maass
forms as period integrals of weight k cusp forms, where one applies (7.8) to

100 ZZOZI a(,n)eQm'm— p
B B e
where "> a(n)q" is a weight k cusp form. In short, f~(z) is the period integral of the

cusp form & (f).
In addition to this important observation, we require the following fact concerning the
nontriviality of certain principal parts of harmonic Maass forms.

Lemma 7.5. If f € Hy (I") has the property that & (f) # 0, then the principal part of
f is nonconstant for at least one cusp.

T,

Sketch of the proof. This lemma follows from the work of Bruinier and Funke [63]. Using
their pairing {e, e}, one finds that {&_f, f} # 0 thanks to its interpretation in terms of
Petersson norms. On the other hand, Proposition 3.5 of [63] expresses this quantity in
terms of the principal part of f and the coefficients of the cusp form &_x(f). An inspection
of this formula reveals that at least one principal part of f must be nonconstant. O

7.4. The D-operator. In addition to the differential operator &_, which defines the
surjective map

527k : HQ*k(Na X) - Sk(Na Y))
we consider the differential operator

(7.9) p—_L.d

T omi dz

We have the following theorem for integer weights.
Theorem 7.6. Suppose that 2 < k € Z and f € Hy_(N), then
D*N(f) € Mi(N).
Moreover, assuming the notation in (7.6), we have
Dk—lf _ Dk—1f+ _ Z C}O—(n)nk—lqn.
n3>—oco

To prove this theorem, we must first recall some further differential operators, the Maass
raising and lowering operators (for example, see [63, 71]) Ry and L;. They are defined by

0 0 0
Ry =2i— +ky '=i (— — z—) + ky 1,
0z s
0 0
L _ _2 2_ — . 2 . ._ ]
I (ax“ay)
With respect to the Petersson slash operator (7.4), these operators satisfy the intertwining
properties

Re(f [x v) = (Bxf) k2 7
Li(f |k v) = (Lif) k=27,



