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Before we prove this result, we first recall the construction of these forms.

Suppose that λ is an integer, and that k := λ+ 1
2 . For each A =

(
α β

γ δ

)
∈ �0(4), let

j(A, z) :=
(

γ

δ

)
ε−1
δ (γ z + δ)

1
2

be the usual factor of automorphy for half-integral weight modular forms. If
f : H → C is a function, then for A ∈ �0(4) we let

(f |k A) (z) := j(A, z)−2λ−1f (Az). (2.5)

As usual, let z = x + iy be the standard variable on H. For s ∈ C and
y ∈ R − {0}, we let

Ms(y) := |y|− k
2 M k

2 sgn(y), s− 1
2
(|y|), (2.6)

where Mν,μ(z) is the standard M-Whittaker function which is a solution to the
differential equation

∂2u
∂z2 +

(
−1

4
+ ν

z
+

1
4 − μ2

z2

)
u = 0.

If m is a positive integer, then define ϕ−m,s(z) by

ϕ−m,s(z) := Ms(−4πmy)e(−mx),

and consider the Poincaré series

Fλ(−m, s; z) :=
∑

A∈�∞\�0(4)

(ϕ−m,s |k A)(z). (2.7)

It is easy to verify that ϕ−m,s(z) is an eigenfunction, with eigenvalue

s(1 − s) + (k2 − 2k)/4, (2.8)

of the weight k hyperbolic Laplacian

�k := −y2
(

∂2

∂x2 + ∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
.

Since ϕ−m,s(z) = O
(

yRe(s)− k
2

)
as y → 0, it follows that Fλ(−m, s; z) converges

absolutely for Re(s) > 1, is a �0(4)-invariant eigenfunction of the Laplacian,
and is real analytic.
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These series provide examples of weak Maass forms of half-integral weight.
Following Bruinier and Funke [5], we make the following definition.

Definition 2.2 A weak Maass form of weight k for the group �0(4) is a smooth
function f : H → C satisfying the following:

(1) For all A ∈ �0(4) we have

(f |k A)(z) = f (z).

(2) We have �kf = 0.
(3) The function f (z) has at most linear exponential growth at all the cusps.

Remark If a weak Maass form f (z) is holomorphic on H, then it is a weakly
holomorphic modular form.

In view of (2.8), it follows that the special s-values at k/2 and 1 − k/2 of
Fλ(−m, s; z) are weak Maass forms of weight k = λ + 1

2 when the defining
series is absolutely convergent.

If λ �∈ {0, 1} and m ≥ 1 is an integer for which (−1)λ+1m ≡ 0, 1 (mod 4), then
we recall the definition

Fλ(−m; z) :=

⎧
⎪⎪⎨

⎪⎪⎩

3
2Fλ

(
−m, k

2 ; z
)

| prλ if λ ≥ 2,

3
2(1−k)�(1−k)

Fλ

(
−m, 1 − k

2 ; z
)

| prλ if λ ≤ −1.

(2.9)

By the discussion above, it follows that Fλ(−m; z) is a weak Maass form of
weight k = λ + 1

2 on �0(4). If λ = 1 and m is a positive integer for which
m ≡ 0, 1 (mod 4), then define F1(−m; z) by

F1(−m; z) := 3
2
F1

(
−m,

3
4

; z
)

| pr1 + 24δ�,mG(z). (2.10)

The function G(z) is given by the Fourier expansion

G(z) :=
∞∑

n=0

H(n)qn + 1
16π

√
y

∞∑

n=−∞
β(4πn2y)q−n2

,

where H(0) = −1/12 and

β(s) :=
∞∫

1

t−
3
2 e−stdt.

Proposition 3.6 of [7] proves that each F1(−m; z) is in M!
3
2
. These series form

the basis given in (1.5).
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Remark Note that the integral β(s) is easily reformulated in terms of the incom-
plete Gamma-function. We make this observation since the non-holomorphic
parts of the Fλ(−m; z), for λ ≤ −7 and λ = −5, will be described in such terms.

Remark We may define the series F0(−m; z) ∈ M!
1
2

using an argument analo-

gous to Proposition 3.6 of [7]. Instead, we simply note that the existence of
the basis (1.6) of M!

1
2
, together with the duality of Theorem 4 [23] and an ele-

mentary property of Kloosterman sums (see Proposition 3.1), gives a direct
realization of the Fourier expansions of F0(−m; z) in terms of the expansions
of the F1(−n; z) described above.

To compute the Fourier expansions of these weak Maass forms, we require
some further preliminaries. For s ∈ C and y ∈ R − {0}, we let

Ws(y) := |y|− k
2 W k

2 sgn(y), s− 1
2
(|y|), (2.11)

where Wν,μ denotes the usual W-Whittaker function. For y > 0, we shall require
the following relations:

M k
2
(−y) = e

y
2 , (2.12)

W1− k
2
(y) = W k

2
(y) = e− y

2 , (2.13)

and
W1− k

2
(−y) = W k

2
(−y) = e

y
2 � (1 − k, y) , (2.14)

where

�(a, x) :=
∞∫

x

e−tta
dt
t

is the incomplete Gamma-function. For z ∈ C, the functions Mν,μ(z) and
Mν,−μ(z) are related by the identity

Wν,μ(z) = �(−2μ)

�( 1
2 − μ − ν)

Mν,μ(z) + �(2μ)

�( 1
2 + μ − ν)

Mν,−μ(z).

From these facts, we easily find, for y > 0, that

M1− k
2
(−y) = (k − 1)e

y
2 �(1 − k, y) + (1 − k)�(1 − k)e

y
2 . (2.15)

Proof of Theorem 2.1 Although the conclusions of Theorem 2.1 (1) and (3)
were obtained previously by Bruinier, Jenkins and the second author in [7], for
completeness we consider the calculation for general λ �∈ {0, 1}. In particular,
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lies in Sκ,L. This shows that Mκ,L = MEis
κ,L ⊕Sκ,L and (1.20) is a formula for

the codimension of Sκ,L in Mκ,L.

In later applications we will mainly be interested in the Eisenstein series
E0(τ) which we simply denote by E(τ). In the same way we write q(γ, n) for
the Fourier coefficients q0(γ, n) of E(τ).

Let us finally cite the following result of [BK]:

Proposition 1.7. The coefficients q(γ, n) of E(τ) are rational numbers.

1.3 Non-holomorphic Poincaré series

As in the previous section we assume that L is an even lattice of signature
(b+, b−) = (2, l), (1, l − 1), or (0, l − 2) with l ≥ 3. Put k = 1 − l/2 and
κ = 1 + l/2. We now construct certain vector valued Maass-Poincaré series
for Mp2(Z) of weight k. Series of a similar type are well known and appear
in many places in the literature (see for instance [He, Ni, Fa]).

Let Mν, µ(z) and Wν, µ(z) be the usual Whittaker functions as defined
in [AbSt] Chap. 13 p. 190 or [E1] Vol. I Chap. 6 p. 264. They are linearly
independent solutions of the Whittaker differential equation

d2w

dz2
+

(
−1

4
+

ν

z
− µ2 − 1/4

z2

)
w = 0. (1.21)

The functions Mν, µ(z) and Mν,−µ(z) are related by the identity

Wν, µ(z) =
Γ (−2µ)

Γ ( 1
2 − µ − ν)

Mν, µ(z) +
Γ (2µ)

Γ ( 1
2 + µ − ν)

Mν,−µ(z) (1.22)

([AbSt] p. 190 (13.1.34)). This implies in particular Wν, µ(z) = Wν,−µ(z). As
z → 0 one has the asymptotic behavior

Mν, µ(z) ∼ zµ+1/2 (µ /∈ − 1
2N), (1.23)

Wν, µ(z) ∼ Γ (2µ)

Γ (µ − ν + 1/2)
z−µ+1/2 (µ ≥ 1/2). (1.24)

If y ∈ R and y → ∞ one has

Mν, µ(y) =
Γ (1 + 2µ)

Γ (µ − ν + 1/2)
ey/2y−ν(1 + O(y−1)), (1.25)

Wν, µ(y) = e−y/2yν(1 + O(y−1)). (1.26)

For convenience we put for s ∈ C and y ∈ R>0:
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Ms(y) = y−k/2M−k/2, s−1/2(y). (1.27)

In the same way we define for s ∈ C and y ∈ R − {0}:

Ws(y) = |y|−k/2Wk/2 sgn(y), s−1/2(|y|). (1.28)

If y < 0 then equation (1.22) implies that

Ms(|y|) =
Γ (1 + k/2 − s)

Γ (1 − 2s)
Ws(y) − Γ (1 + k/2 − s)Γ (2s − 1)

Γ (1 − 2s)Γ (s + k/2)
M1−s(|y|).

(1.29)

The functions Ms(y) and Ws(y) are holomorphic in s. Later we will be
interested in certain special s-values. For y > 0 we have

Mk/2(y) = y−k/2M−k/2, k/2−1/2(y) = ey/2, (1.30)

W1−k/2(y) = y−k/2Wk/2, 1/2−k/2(y) = e−y/2. (1.31)

Using the standard integral representation

Γ (1/2 − ν + µ)Wν, µ(z) = e−z/2zµ+1/2

∞∫

0

e−tzt−1/2−ν+µ(1 + t)−1/2+ν+µ dt

(ℜ(µ−ν) > −1/2, ℜ(z) > 0) of the W -Whittaker function ([E1] Vol. I p. 274
(18)), we find for y < 0:

W1−k/2(y) = |y|−k/2W−k/2, 1/2−k/2(|y|)

= e−|y|/2|y|1−k

∞∫

0

e−t|y|(1 + t)−k dt

= e|y|/2|y|1−k

∞∫

1

e−t|y|t−k dt.

If we insert the definition of the incomplete Gamma function (cf. [AbSt] p. 81)

Γ (a, x) =

∞∫

x

e−tta−1 dt, (1.32)

we obtain for y < 0 the identity

W1−k/2(y) = e−y/2Γ (1 − k, |y|). (1.33)

The usual Laplace operator of weight k (cf. [Ma1])
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Suppose that k ∈ 1
2

+ Z. We define a class of Poincaré series Pk(s; z). For matrices
( a b

c d ) ∈ Γ0(2), with c ≥ 0, define the character χ(·) by

(11.7) χ

((
a b
c d

))
:=

{
e
(
− b

24

)
if c = 0,

i−1/2(−1)
1
2
(c+ad+1)e

(
−a+d

24c
− a

4
+ 3dc

8

)
· ω−1

−d,c if c > 0,

where

(11.8) ωd,c := eπis(d,c).

Here s(d, c) denotes the classical Dedekind sum.
Throughout, let z = x+ iy, and for s ∈ C, k ∈ 1

2
+ Z, and y ∈ R \ {0}, and let

(11.9) Ms(y) := |y|−
k
2M k

2
sgn(y), s− 1

2
(|y|),

where Mν,µ(z) again is the M -Whittaker function. Furthermore, let

ϕs,k(z) := Ms

(
−πy

6

)
e
(
− x

24

)
.

Using this notation, define the Poincaré series Pk(s; z) by

(11.10) Pk(s; z) :=
2√
π

∑
M∈Γ∞\Γ0(2)

χ(M)−1(cz + d)−kϕs,k(Mz).

Here Γ∞ again is the subgroup of translations in SL2(Z).
The defining series is absolutely convergent for Pk

(
1− k

2
; z
)

for k < 1/2, and is con-

ditionally convergent when k = 1/2. We are interested in P 1
2

(
3
4
; z
)
, which we define by

analytically continuing the Fourier expansion. This argument is not straightforward (see
Theorem 3.2 and Corollary 4.2 of [53]). Thanks to the properties of Mν,µ, we find that
P 1

2

(
3
4
; 24z

)
is a Maass form of weight 1/2 for Γ0(144) with Nebentypus χ12.

A long calculation gives the following Fourier expansion

(11.11) P 1
2

(
3

4
; z

)
=

(
1− π−

1
2 · Γ

(
1

2
,
πy

6

))
· q−

1
24 +

0∑
n=−∞

γy(n)qn− 1
24 +

∞∑
n=1

β(n)qn− 1
24 ,

where for positive integers n we have

(11.12) β(n) = π(24n− 1)−
1
4

∞∑
k=1

(−1)b
k+1
2
cA2k

(
n− k(1+(−1)k)

4

)
k

· I 1
2

(
π
√

24n− 1

12k

)
.

The Poincaré series P 1
2

(
3
4
; z
)

was defined so that (11.12) coincides with the conjectured

expressions for the coefficients α(n).
For convenience, we let

(11.13) P (z) := P 1
2

(
3

4
; 24z

)
.

Canonically decompose P (z) into a non-holomorphic and a holomorphic part

(11.14) P (z) = P−(z) + P+(z).



HARMONIC MAASS FORMS AND NUMBER THEORY 55

In particular, we have that

P+(z) = q−1 +
∞∑

n=1

β(n)q24n−1.

Since P (z) and D
(

1
2
; z
)

are Maass forms of weight 1/2 for Γ0(144) with Nebentypus χ12,
(11.11) and (11.12) imply that the proof of the conjecture reduces to proving that these
forms are equal. This conclusion is obtained after a lengthy and somewhat complicated
argument. �

11.2. Exact formulas for harmonic Maass forms with weight ≤ 1/2. Generalizing
the results of the previous section, Bringmann and the author have obtained exact formulas
for the coefficients of the holomorphic parts of harmonic Maass forms with weight 2− k ≤
1/2 [59]. Suppose that f is in H2−k(N,χ), the space of weight 2−k harmonic Maass forms
on Γ0(N) with Nebentypus character χ, where we assume that 3

2
≤ k ∈ 1

2
Z. As usual, we

denote its Fourier expansion by

(11.15) f(z) =
∑

n�−∞

c+f (n)qn +
∑
n<0

c−f (n)Γ(k − 1, 4π|n|y)qn.

It is our objective to determine exact formulas for the coefficients c+f (n) of the holomorphic
part of f .

We now define the functions which are required for these exact formulas. Throughout,
we let k ∈ 1

2
Z, and we let χ be a Dirichlet character modulo N , where 4 | N whenever

k ∈ 1
2
Z \ Z. Using this character, for a matrix M = ( a b

c d ) ∈ Γ0(N), we let

(11.16) Ψk(M) :=

{
χ(d) if k ∈ Z,
χ(d)

(
c
d

)
ε2k
d if k ∈ 1

2
Z \ Z,

where εd is defined by (7.2), and where
(

c
d

)
is the usual extended Legendre symbol. In

addition, if T = ( a b
c d ) ∈ SL2(Z), then we let

(11.17) µ(T ; z) := (cz + d)2−k.

Moreover, for pairs of matrices S, T ∈ SL2(Z), we then let

(11.18) σ(T, S) :=
µ(T ;Sz)µ(S; z)

µ(TS; z)
.

Using this notation, we now define certain generic Kloosterman sums which are naturally
associated with cusps of Γ0(N).

Suppose that ρ = aρ

cρ
= L−1∞, (L ∈ SL2(Z)) is a cusp of Γ0(N) with cρ|N and

gcd(aρ, N) = 1. Let tρ and κρ be the cusp width and parameter of ρ with respect to
Γ0(N) (see 11.21). Suppose that c > 0 with cρ|c and N

cρ
- c. Then for integers n and m we










