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Before we prove this result, we first recall the construction of these forms.

Suppose that A is aninteger, and that k := A+ % Foreach A = (;‘j 'g ) eTp4),let

j(A,2) = (%)egl(yz +6)?

be the usual factor of automorphy for half-integral weight modular forms. If
f :H — Cis a function, then for A € I'p(4) we let

(f Ik A) (2) == j(A,2) " f(Az). (25)

As usual, let z = x + iy be the standard variable on H. For s € C and
y e R — {0}, we let

_k
Ms(y) = |y| 2M§ Sgn(y),s_%(WD» (26)

where M, ;,(z) is the standard M-Whittaker function which is a solution to the
differential equation

3%u 1 v %_Mz
— +{—=+- =0.
822+( 4+Z+ 2 u

If m is a positive integer, then define ¢_,, 5(z) by

O—ms(2) := Ms(—dmmy)e(—mx),
and consider the Poincaré series

Fl=ms;2) = D (poms lk A 27
AeT o \Tp(4)

It is easy to verify that ¢_,, () is an eigenfunction, with eigenvalue
s(1 —s) + (k> — 2k) /4, (2.8)

of the weight k hyperbolic Laplacian

aeim 2 (Z 4 2 iy (242
=TV G2 9y? Y\ ox ay)’

Since ¢_,;,5(z) = O (yRe(s)_g) as y — 0, it follows that F; (—m,s; z) converges

absolutely for Re(s) > 1, is a I'g(4)-invariant eigenfunction of the Laplacian,
and is real analytic.

@ Springer



Coefficients of half-integral weight Poincaré series 601

These series provide examples of weak Maass forms of half-integral weight.
Following Bruinier and Funke [5], we make the following definition.

Definition 2.2 A weak Maass form of weight k for the group T'g(4) is a smooth
function f : H — C satisfying the following:
(1) Forall A € To(4) we have

(f e D) = f(2).

(2)  Wehave Aif = 0.
(3)  The function f(z) has at most linear exponential growth at all the cusps.

Remark If a weak Maass form f(z) is holomorphic on H, then it is a weakly
holomorphic modular form.

In view of (2.8), it follows that the special s-values at k/2 and 1 — k/2 of
Fo(—m,s;z) are weak Maass forms of weight k = A + % when the defining
series is absolutely convergent.

If A ¢ {0,1} and m > 1is an integer for which (=D*1m = 0,1 (mod 4), then
we recall the definition

37 (-m.%:2) Tor, if 2 >2,
FA(_m; Z) = (29)
3 .
m-ﬂ (—m,l z,z) |pr, ifx<-1
By the discussion above, it follows that F)(—m;z) is a weak Maass form of

weight k = A + % on I'p(4). If A = 1 and m is a positive integer for which
m = 0,1 (mod 4), then define F;(—m;z) by

3
Fi(—m;z2) = = —
1(—=m;2) Zfl( m o

3
—;Z) | pry +2460,,G(2). (2.10)

The function G(z) is given by the Fourier expansion

G(z):= > H(mq"+ Z Brn’y)qg™"
~= 167 f
where H(0) = —1/12 and

B(s) :=/t_ie_“dt.

1

Proposition 3.6 of [7] proves that each Fj(—m;z) is in M%. These series form
2

the basis given in (1.5).

@ Springer



602 K. Bringmann, K. Ono

Remark Note that the integral B(s) is easily reformulated in terms of the incom-
plete Gamma-function. We make this observation since the non-holomorphic
parts of the Fy (—m; z), for A < —7 and A = —5, will be described in such terms.

Remark We may define the series Fo(—m;z) € M ‘1 using an argument analo-

2
gous to Proposition 3.6 of [7]. Instead, we simply note that the existence of
the basis (1.6) of M',, together with the duality of Theorem 4 [23] and an ele-
2

mentary property of Kloosterman sums (see Proposition 3.1), gives a direct
realization of the Fourier expansions of Fy(—m;z) in terms of the expansions
of the Fj(—n;z) described above.

To compute the Fourier expansions of these weak Maass forms, we require
some further preliminaries. For s € C and y € R — {0}, we let

W) = MW o1 (D, (2.11)

% sgn(y),s

where W, , denotes the usual W-Whittaker function. For y > 0, we shall require
the following relations:

My (=y) =e?, 2.12)
W) = Wi () = e, (2.13)
and ,
Wi_k(=y) =Wi(=y) =e2l' (1 — k), (2.14)
where
00

dr
['(a,x) :=/e_’t“7

X

is the incomplete Gamma-function. For z € C, the functions M, ,(z) and
M, . (z) are related by the identity

I'(—2u) I'(2p)
WV,/L(Z) = 1—MMV,/L(Z) + 1—MMU,7/L(Z)-
'GG—wpu—v) Lz +un—v)
From these facts, we easily find, for y > 0, that
My g (=y) = (k= Deil'(1—k,y)+ 1 — kT - ke?. (2.15)

Proof of Theorem 2.1 Although the conclusions of Theorem 2.1 (1) and (3)
were obtained previously by Bruinier, Jenkins and the second author in [7], for
completeness we consider the calculation for general A ¢ {0,1}. In particular,

@ Springer



1.3 Non-holomorphic Poincaré series of negative weight 27

lies in Sy 1. This shows that M, 1 = MEIE @ Sk, r and (1.20) is a formula for
the codimension of S 1, in M, 1.

In later applications we will mainly be interested in the Eisenstein series
Ey(7) which we simply denote by E(7). In the same way we write g(vy,n) for
the Fourier coefficients go(y,n) of E(7).

Let us finally cite the following result of [BK]:

Proposition 1.7. The coefficients q(v,n) of E(T) are rational numbers.

1.3 Non-holomorphic Poincaré series

As in the previous section we assume that L is an even lattice of signature
(bT,07) = (2,1), (1,1 — 1), or (0,1 —2) with [ > 3. Put k = 1 —1/2 and
k = 1+1/2. We now construct certain vector valued Maass-Poincaré series
for Mpy(Z) of weight k. Series of a similar type are well known and appear
in many places in the literature (see for instance [He, Ni, Fal).

Let M, ,(z) and W, ,(z) be the usual Whittaker functions as defined
in [AbSt] Chap. 13 p. 190 or [E1] Vol. I Chap. 6 p. 264. They are linearly
independent solutions of the Whittaker differential equation

d*w 1 v p?-1/4
— -t - — =0. 1.21
iz " ( 177 22 ) v (121)

The functions M, ,(z) and M, _,(z) are related by the identity

I'(—2p) I'(2p

WV:H<Z) = 17]\41’7#(2) + 17)

I'(z —p—v) I'(z+p—v)

([AbSt] p. 190 (13.1.34)). This implies in particular W, ,(z) = W, _,(z). As
z — 0 one has the asymptotic behavior

M, _.(2)  (1.22)

My u(2) ~ 242 (ug —1N), (1.23)

Wou(2) ~ ml:(j/i)l/z)”“/ 2 (w=z1/2. (129)

If y € R and y — oo one has

_ F(l + 2:“) y/2, —v -1
My, u(y) = Thi—vt1/2)° Py (1+0@y™), (1.25)
Wy, u(y) = e ¥y (1+0(y™ ). (1.26)

For convenience we put for s € C and y € Ryq:



28 1 Vector valued modular forms for the metaplectic group

M;(y) = yik/2M—k/2,s—1/2(y)~ (1.27)

In the same way we define for s € C and y € R — {0}:

WS(?J) = |y|_k/2Wk/25gn(y),571/2(‘y|)' (1-28)
If y < 0 then equation (1.22) implies that

r(1+k/2—s)

B I'l+k/2—s)I"(2s—1)
T T(1-2¢) B

Mis([yl) I(1-2s)I(s+k/2)

Ws(y)

Mi_s(Jyl).
(1.29)

The functions M,(y) and Ws(y) are holomorphic in s. Later we will be
interested in certain special s-values. For y > 0 we have

Mo (y) =y 2 M_y o 1j9-1/2(y) = €¥/2, (1.30)
Wi 2(y) = y_k/QWk/z, 12-k/2(y) = e V2. (1.31)

Using the standard integral representation

D)2 = v+ @)Wy, u(z) = e #2201/ / e TR (L ) T2 gy
0

(R(u—v) > —1/2, R(z) > 0) of the W-Whittaker function ([E1] Vol. I p. 274
(18)), we find for y < 0:

Wi_k2(y) = |y|_k/2Wfk/2,1/27k/2(|y|)

oo

= e IWI/2)y 1k / e+t Fat
0

o0
_ e|y|/2|y|1fk/67t\y|fk gt
1

If we insert the definition of the incomplete Gamma function (cf. [AbSt] p. 81)

I'(a,x) = /efttaf1 dt, (1.32)

we obtain for y < 0 the identity
Wikya(y) = e 20 (1= K, [y]). (1.33)

The usual Laplace operator of weight & (cf. [Mal])



2.5. Double coset decomposition 39

Proof. By symmetry we can assume without loss of generality that c(a) >
c(b). fw=(,,)and o’ = () ) with 0 < ¢,¢ < X are both in o, 'Toyp,
then w” = w'w™ = ([}, 1) with ¢ = ¢/d — ¢d’ is in 07 Toq. If ¢ = 0 then
the cusps a,b are equivalent, so equal, w"” = (1 I), d=candd =d If
¢’ # 0 then |¢’| > ¢(a) and

d d|_ cla) _ e(a
7= e
Summing this inequality over 0 < ¢ < X and 0 < d < ¢, where d' /c is chosen
to be the successive point to d/c, we get (2.36).

(2.37)

Applying (2.36) for X = c(a, b), we infer the inequality (2.34) from the
trivial bound

{d(mod ) : (Z :,) & aa_ll"ab}

Proposition 2.9. Let a be a cusp forT', z€e H and Y > 0. We have

. 10
(2.38) |{1eru\r:1maa1ryz>y}|<1+W.

21, ifceC(a,b).

Proof. Conjugating the group, we can assume that a = o0, 04 = 1 and
[ = B. Then the strip P = {2z : 0 < £ < 1,y > 0} is a fundamental domain
of I'y. Let D be the standard polygon of I, so D consists of points in P
of deformation less than 1. For the proof we may assume that z € D, so
lez+d| > 1 for any v = (: %) € T with ¢ > 0. Since Im vz = ylez+d|™2 > Y,
thisimpliesy > Y, ¢ < (yY)—Tl and |cz+d| < (y/Y)z. By the last inequality
and the spacing property (2.37) we estimate the number of pairs {c, d} with
C<c<2C by 1 1

8C sy\z _10C (y 2

— (2" <s—(=])".

L c(a) (Y) c(a) Y)

Adding these bounds for C' = 2_"(yY):51’ withn > 1, we get 10/c(a)Y’. This
is an estimate for the number of relevant 4’s not in I'y. Finally adding 1 to
account for I'y, we obtain (2.38).

As an example consider the Hecke congruence group I'o(g) (note that

. : 1
=1 € Ty(g)) and the cusps at co,0. The scaling matrices are oo = ( 1

and oy = (\/‘7 _1/‘/'7). We have 02! T0(¢)000 = 05 'To(g)oo = To(g), and
the set 03 'T'o(¢)o0 = 05 'To(g)oco consists of matrices of type

/g ﬂ/\/ﬁ) i 6€Z, abg—pfy=1.
(2.39) (’7\/6 6./ with a, 3,7,6 € Z, adq — by

Hence ¢(o0) = ¢(0) = ¢ and ¢(o0, 0) = ¢(0, ) = /7.




. 2. Automorphic Forms in Generg]

Remark. Propositions 2.7, 2.8 and 2.9 are formulated for a Fuchsian groyp

of motions rather than for a discrete group of matrices. Remember to take

into account the factor —1 = (—1 —1) when translating the correspondence

between the linear fractional transformations and their matrix representa.
tions (if —1 belongs to the group of matrices).

2.6. Multiplier systems

For a complex number z # 0 we choose its argument in (-7, 7]. We denote
the principal branch of the logarithm by log 2, so it is real for positive z and

logz =log|z| +iarg z if z € C".
Then we define the power z° for any s € C by
z° = exp(slog z).
Let A, B € SLy(R). By the chain rule
JaB(2) = ja(B2)jp(2)
it follows that the expression

(2.40) 2mw(A, B) = —arg jap(z) + arg Jja(Bz) + arg jp(z)

does not depend on 2 € H. More precisely, w(A, B) takes only three values
-1,0,1, becau§e lw(A, B)| is an integer < 5- By examining numerous cases
one can establish the following properties (cf. [Pet] or [Ran]):

(2.41) w(AB,C) +w(A, B) = w(A, BC) + w(B, C)
(2.42) w(A,B) = w(B,4) if A, B commute
(2.43) “(DA, B) = w(A, BD) = w(4, B)
(2.44) w(AD, B) = w(4, DB)

(2.45) w(A~'DA, B) + w(4,A7'DAB) = w(A, B)

e e i ot en A ko m



2.6. Multiplier systems 41

(2.46) w(A, D) = w(D,B) =0

(2.47) w(ADA™!, A) = w(A,A"'DA) = 0

where A, B, C are arbitrary and D = (1 I) Here (2.45) is just a special case

of (2.41) with A, B, C replaced by A, A~1DA, B respectively. Moreover
we have

w(AD,A™!) = w(A, DA™Y = w(A, A H=0
except for A = (%) with d < 0, in which case w(4, A7) =1,
For any real number k we define the factor system of weight k by setting

(2.48) w(A, B) = e(kw(A, B)).

Note that w(A, B) depends on & (mod 1) and w(A, B) = 1if k is an integer.
We have

(2.49) w(A, B)jap(z)* = ja(Bz)*jp(z)F.

For any A € SLa(R) we define the “slash” operator |A acting on func-
tions f : H — C by

(2.50) fia(z) = ja(z)7* f(A2).
This satisfies the rule of composition
(2.51) fiap = w(A, B)(fia)5-

Let I' C SLy(R) be a discrete subgroup. A multiplier system of weight
k for T is a function ¥ : ' — C such that

(2.52) [9(y)] =1

(2.53) I(ny2) = wlv, v2)9(n)d(r2)-

Since w(—1,~1) = e(k), the above properties imply that if —1 belongs to
T, then ¥(—1) = +e(—k/2). Throughout we shall require that

(2.54) I(-1)=e(-k/2) if —1€T,

which is called the consistency condition (the other choice yields the zero
automorphic form only).



Chapter 3

The Eisenstein and
the Poincaré Series

3.1. General Poincaré series

A very important class of automorphic forms is constructed by the method
of averaging. Suppose a is a cusp for ' which is singular with respect to a
multiplier system 9 of weight k. Let p : H — C be a holomorphic function
which is periodic of period 1. Define 7: I' x H — C by

(3.1) n(7,2) = 9@ (057,7) Joz1,() "D CARTIR

Actually (v, 2) depends only on the coset I'a7. To prove this, consider
7(v, z), where o = nry with n € I'q, so n = oaB0;!, where § is an integral
translation. We have

p(o71y'2) = p(Boa'vz) = p(05772)
ja:"-r'(z)_k = jﬂa:lq(z)—k = jggl—y(z)_k
(') = 9(ny) = w(n, 7))

by (2.53) and .
win,Mw (071,7) =w(0:1,7)

by (2.45). Collecting these results, we arrive at n(y',z) = m(v,2). This
property allows us to write without ambiguity the infinite series
(3.2) Pu(2)= Y m(1:2)

y€la\T
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48 —

provided it converges absolutely. For example,

(3.2) is majorized by i
2

S @ =" Y (mogiv2)?,

y€la\T ¥El oo \I'
es absolutely if k > 2 by virtue of Proposition 2.9.

if p(z) is bounded the serieg

and this converg .
For any singular cusp b we deduce the following:

Poio, (2) = Joy (z)"kPa(sz)
i@ 3 w(mou)

yEla\I'
= jo, (2)7F Z T (aaq’ab—l, opz)
WEB\U,—]I‘G.,

=Jos (3)_k z d (Ga'TU;l) w (Ua_l, Ja’}‘ab—l) j_ra;-1 (opz
yeB\o, 'Tay

) "*p(yz).

Since jo(2) *j,0-1(02) ™% = W(yo ™, 0)j, (), this gives

(3.3) Puo,(z) = D Bas(1)ir(2)*p(72)
yeB\a; 'Tay

where

(3.4) Yap(y) =9 (cru"yo'b_l) w (aa‘l,aa'ya;l) w ('ycrb_l, ab) .

Using the relation (2.41), one can derive a handful of expressions for ¥qs(7)-
For example, we have

(3.5) Pap(Y)w(og,7) =9 (aa'ycrb"l) w (au'yab_l, ab) .
Hence, in particular, for a = b the series (3.3) becomes
(3.6) Pulau (2) = E 5"(7’)-?.'7' (Z)—kp('}"z)
‘Y'EF'M\P"
Er;ere ¥’ is the multiplier system for the conjugate group IV = o, 'I'g, given
fe 1
(3.7) VO )w(00,7) = 9v)w(y,00) iy = o7 lyo,.

The function P,(z) defined by (3.2)
ciated with the cusp a and the generati
singular with respect to the multiplier
the series (3.2) converges absolutely),

is called the Poincaré series asso-
ng function p (a is required to be
System, and p is periodic such that

Proposition 3.1. The Poincare series P

Z) is .
(3.8) a(2) is an automorphic form,

Pgr(z) = H(7)Pq(z2) if rel.
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m—

Proof. By conjugating the group we may assume that a = 00 and 6, = 1,
in which case the series (3.2) looks simpler, namely

(3.9) Poo(2) = Y. 9(1)ir(2)*p(72).

YEl o\
Hence for r € T
Poo(t2) = Y. B()ir(r2) "p(772)

Y€l \I
= Z 1—9‘(77“1).:7‘77'1(72)—*-1)(72)'
Yl \I'
Here we have

1_9(77_1) = TTJ(’T, 7_1)1_9(7)1_?(7-_1) = (7, T-l)w('r: 7—1)0(7)3(7):

j,,,,_l('rz)_k=w('y,’r‘“1)j-,(z)_kjr—l(TZ)"k='w(’7ﬂ'_l)@(T:T_l)jr(z)kjv(z)#ks

and by these expressions we arrive at (3.8). Clearly P.(z) is holomorphic in
H. To prove the holomorphy at cusps we need to expand P,(2) in Fourier

series.

3.2. Fourier expansion of Poincaré series

Let a,b be singular cusps for a multiplier system 9 on . We seek the
Fourier expansion of P4(2) at the cusp b, i.e. for the series (3.3). Applying
the double coset decomposition (2.32), we split the series into

Pujah(z) = 63[,[)(2) + Z aab(?)I'Y(z)
1;&763\0;‘1"0.,/3

where the first term comes from the contribution of v =1 (which exists only
if a =b), and for any v = (z ;) € o7 'Top with ¢ > 0 we have

I'T(z) = Z j‘rr(z)_kp(’f‘rz)

TeB

n 1
= Z(c(z-i'n) +d)™*p (% - c(c(z+n)+d)) '

neZ

By Poisson’s summation we get

IL(z) = Z/ c(z+v)+ d)~*p (% ~ T +1v) T d)) e(—nv)dv.

(
neZ v —o°

[o. =]

B B S PP S ———

_—
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(.‘I‘]'%

In the sequel we specialize the generating function to
p(z) = e(mz) ‘;

where m is a non-negative integer. For this function we cap ¢
Fourier integral quite explicitly. First by a linear change of

obtain +nd

ma+n

Li(z) = Ze (nz o —-———) Je(m,n)
neZ ¢

Ompute tp, ~
Variable y, ‘

where

co+-iy ] -m

Je(m,n) = f (cv)*e (—2— - nv) dv.
~00+iy )

Notice that this integral does not depend on y by C

n < 0, then, moving the horizontal line of inte

the integral vanishes,

auchy’s theorem, It
gration upwards, we see that
Te(m, n)=0 ifn<0.

If n > 0 but m = 0, then we have (see [G-R], 8.315.1)

k e
(3.10) J:(0,n) = (f—:) %

For n > 0 and m > 0 we have (see [G-R], 8.412.2)

21 (ny\ % 4m\/mn
11 ==(=)°
(B11) ey o (m) Ji1 ( c )
where J,(z) is the Bessel function of order v, defined by
% -1)¢ | v+2¢
(3.12) Jo(z) = (=1) Z\*
(z) gE!I‘(€+l+u)(2) '

Exercise. Derive (3.11) from (3.10) using power series expansion for (2)

Collecting the above com
pansion for the Poincaré ser;
namely

Putations, we obta.iﬁ the desired Fourier e’;‘
€s generated by the function p(z) = e(mz)

Py, (2) = 6nbe(mz) i E e(nz) E Sas(m, n; ¢) Je(m, n)
n=1

c>0
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where Je(m, n) are given by (3.10)-(3.11), and Ses(m, n;c) is the Klooster-
man sum defined by

(3.13) San(m,n;c) = Z Baili)e (ma :— nd) .

7=(2 ;)EB\U:IPO’b/B

Recall that 940(7) is given in terms of the multiplier system by (3.5).

Since there are no negative terms in the Fourier expansion at any cusp,
it proves that the Poincaré series is an automorphic form in our strict sense.

For m = 0 we denote P4(z) by
(3.14) Ea(z2)= ) 9o (0a"7) o1, (2)7F,
vyela\I

which is called the Eisenstein series of weight k. This has the Fourier ex-
pansion

(3.15) Joy (2) ¥ Ea(0b2) = 65 + > _ nlan(n)e(nz)
n=1
with
2m\ ¥ nk-1 —k
(3'16) ﬂab(n) = (T) T,m ;C Sap(0, n; C).
For m > 0 we denote Pg(2) by
(3'17) Pam(z) = Z "—9(’7)'5J (051:7) jg;h,(z)_ke (maa_l'yz)
yEl\T

and call Py, (2) the m-th Poincaré series of weight k. This has the Fourier
expansion

(3.18) Jou (2) " Pam(02) = D _ pas(m, n)e(nz)
: n=1

with

(3.19)

k-1 ' _ 4m/mn
Pab(m, ﬂ.) =(;T_;") : {6nbfsmn -+ 27Ti-* zo Cc 1Sab(m’ n, C)Jk—l ( c )} *
c>

Since there is no constant term in the Fourier expansion (3.18), we obtain

Proposition 3.2. For m > 1 the Poincaré series Pam(z) is a cusp form.
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Suppose that k € % + Z. We define a class of Poincaré series Py(s;z). For matrices
(29) € I'p(2), with ¢ > 0, define the character x(-) by

c d Z._l/z(_l)%(c-i-ad-&-l)e (_M — % + %‘lc) . w:SLC if ¢ > 0,

24c
where
(11.8) Wy, 1= €m0,

Here s(d, ¢) denotes the classical Dedekind sum.
Throughout, let 2 = x + iy, and for s € C, k € % +7Z, and y € R\ {0}, and let

_k
(119) Ms(y) = ’y| QMgsgn(y),s—%(‘yDa
where M, (%) again is the M-Whittaker function. Furthermore, let

o (1) ().

Using this notation, define the Poincaré series Py (s; z) by

(11.10) Pu(s;2) = % S (M) ez 4 d) (M),
MeT 5\ (2)

Here Iy, again is the subgroup of translations in SLy(Z).
The defining series is absolutely convergent for Py (1 — ) for £ < 1/2, and is con-
ditionally convergent when k& = 1/2. We are interested in P1 ( ; ), which we define by

analytically continuing the Fourier expansion. This argument is not straightforward (see
Theorem 3.2 and Corollary 4.2 of [53]). Thanks to the properties of M, ,, we find that
Py (3;242) is a Maass form of weight 1/2 for I'g(144) with Nebentypus x1».

A long calculation gives the following Fourier expansion

(11.11) Py G;Z> _ (1 _atr (%%)) G 20: (1) +n§ﬁ(n>q 1

n=-—oo
where for positive integers n we have

o=

1 _1\k
i (—1)1HH A, (n_w> ;
— k

The Poincaré series P1 ( ,z) was defined so that (11.12) coincides with the conjectured

»N»—t

(11.12)  B(n) = m(24n — 1)~

(2

(NI

expressions for the coefficients a(n).
For convenience, we let

(11.13) P(z) := P, (2;242) .

Canonically decompose P(z) into a non-holomorphic and a holomorphic part

(11.14) P(z) = P~ (z) + P*(2).
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In particular, we have that
P =g+ Y flgn
n=1

Since P(z) and D (3;z) are Maass forms of weight 1/2 for I'g(144) with Nebentypus x12,
(11.11) and (11.12) imply that the proof of the conjecture reduces to proving that these
forms are equal. This conclusion is obtained after a lengthy and somewhat complicated
argument. U

11.2. Exact formulas for harmonic Maass forms with weight < 1/2. Generalizing
the results of the previous section, Bringmann and the author have obtained exact formulas
for the coefficients of the holomorphic parts of harmonic Maass forms with weight 2 — & <
1/2 [59]. Suppose that f isin Hy_ (N, x), the space of weight 2 — k harmonic Maass forms
on I'y(N) with Nebentypus character x, where we assume that % <ke %Z. As usual, we
denote its Fourier expansion by

(11.15) f(z) = Z cf(n)g" + Zc}(n)F(k: — 1,47|nly)q".

n>>>—oo n<0

It is our objective to determine exact formulas for the coefficients ¢ (n) of the holomorphic
part of f.

We now define the functions which are required for these exact formulas. Throughout,
we let k € %Z, and we let y be a Dirichlet character modulo N, where 4 | N whenever
k € 37\ Z. Using this character, for a matrix M = (2}) € To(N), we let

‘ (d) if k € Z,
(11.16) (M) = { i(d) (&) e ifkeiz\Z,

where €, is defined by (7.2), and where (£) is the usual extended Legendre symbol. In
addition, if T'= (%) € SLy(Z), then we let

(11.17) w(T;2) := (cz +d)* .
Moreover, for pairs of matrices S,T € SLy(Z), we then let

T; Sz)pu(S; 2)
u(T'S; z)

(11.18) o(T.5) = M

Using this notation, we now define certain generic Kloosterman sums which are naturally
associated with cusps of T'o(V).

Suppose that p = £ = L™'oo, (L € SLy(Z)) is a cusp of T'y(N) with ¢,|N and
ged(ay, N) = 1. Let t, and &, be the cusp width and parameter of p with respect to
Lo(N) (see 11.21). Suppose that ¢ > 0 with ¢,|c and g { ¢. Then for integers n and m we



CHAPTER XVI
THE CONFLUENT HYPERGEOMETRIC FUNCTION

16'1. The confluence of two singularities of Riemann’s equation.

We have seen (§ 10'8) that the linear differential equation with two
regular singularities only can be integrated in terms of elementary functions;
while the solution of the linear differential equation with three regular
singularities is substantially the topic of Chapter x1v. As the next type
in order of complexity, we shall consider a modified form of the differential
equation which is obtained from Riemann’s equation by the confluence of
two of the singularities. This confluence gives an equation with an irregular
singularity (corresponding to the confluent singularities of Riemann’s equation)
and a regular singularity corresponding to the third singularity of Riemann’s
equation.

The confluent equation is obtained by making ¢ -~ co in the equation
defined by the scheme

0 0 c
P é +m —c¢ c—k 2|
%— m 0 k
The equation in question is readily found to be

dzu+du (k+i_mu) =0 e, o ey (A).

dz? 2t

dz " \z
We modify this equation by writing u=e~¥ W, , (2) and obtain as the
equation*® for W, (2)

aw 1k i-m
W*’{'E"'E* 2

}W=o ..... . (B).

The reader will verify that the singularities of this equation are at
0 and w0, the former being regular and the latter irregular; and when 2m
is not an integer, two integrals of equation (B) which are regular near 0 and
valid for all finite values of z are given by the series

t+m—k (F+m—k)E+m=k)
Ten+ ) T 21@n+ ) @nt D)

M;,,m(z)=zi+me"5z {l-l— z“+...},

* This equation wae given by Whittaker, Bulletin American Math. Soc. x. (1904), pp. 125-134.
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t—m—k G-m—-k)y(§—m-k)
111 =2m)" " 21(1 —2m) (2 - 2m)

These series obviously form a fundamental system of solutions.

Mg,_m(z)zz%‘""e‘*a{l+ z“+...}.

[Nore. Series of the type in {} have been considered by Kummer* and more recently
by Jacobsthalt and Barnes{; the special series in which £=0 had been investigated by
Lagrange in 1762-1765 (Qeuvres, 1. p. 480). In the notation of Kummer, modified by
Barnes, they would be written F){}+m—%&; £2m+1; z}; the reason for discussing

solutions of equation (B) rather than those of the equation z%—(z-— p) z—‘g—ay=0, of

which ,Fy (a; p; z) is a solution, is the greater appearance of symmetry in the formulae,
together with a simplicity in the equations giving various functions of Applied Mathe-
madtics (see § 16:2) in terms of solutions of equation (B).]

16:11. Kummer’s formulae.
(I) We shall now shew that, if 2m is not a negative integer, then
e My 0 (2)=(=2) T E M Mg (= 2),
that is to say,
Shui-& z+(5+’_’“-k)(%+"“‘k)z=+...
1TEm+D)’ T 21@m+1)(2m +2)
_F+m+k z+(§+m+k)(i}+m+k)zz_
11(2m+1) 21(2m + 1) (2m + 2) '

For, replacing ¢~ by its expansion in powers of z, the coefficient of 2" in
the produet of absolutely convergent series on the left is
T @m+1)T(m+i+k+n)
nl T(m+3+E)T 2m+1+n)
by § 1411, and this is the coefficient of 2" on the right§; we have thus
obtained the required result.

This will be called Kummer's first formula.

(II) The equation

] ¥
M, (5)=22tT"{14+ = . },
om () 1+ % mrmiDmy D
valid when 2m is not a negative integer, will be called Kummer's second
formula.
To prove it we observe that the coefficient of zntmti in the product

At e=¥2 Fy (m+%; 2m+1; 2),

e—"{l +

%F(%-pm—k, —n; 2m+1; 1)=(

* Journal fir Math. xv. (1836), p. 139.

+ Math. Ann. nvi. (1903), pp. 120-154.

t Trans. Camb. Phil. Soc. xx. (1908), pp. 253-279.

§ The result is still true when m+}+k is a negative integer, by a slight modification of the

analysis of § 14-11.



16'11,16°12] THE CONFLUENT HYPERGEOMETRIC FUNCTION 339

of which the second and third factors possess absolutely convergent expansions, is (§ 373)

(F+m) (3+m)... (n —m+3)
n!(2m+1) @m+2) ... @m+n

_ G+m)E4m) ... (n—m+])
Tl @n+1) @m+2) ... @nta)

by Kummer’s relation*
F(2a,28; a+B+1; 2)=F{a, B; a+B+}; v (1-a)},
valid when 0 S <%; and so the coefficient of 2774} (by § 14:11) is

_@G+m)(E+m)...(e-m+}) T(-n+i-m)T$)
n! (2m+1) (2m+2) ... 2m+n) T (§=—m—4n)T (3—4n)
J L(3-m)T(})
T nl (@m+1)@m+2)... @m+n) T F—m—3n) T (F—4n)’
and when 7 is odd this vanishes ; for even values of n (=2p) it is
Fr@-m)(=H(-3)..3-p)
2p ! 2% (m4%) (m+5) ... (m+p—3) (m+1) (m+2) ... (m+p) T (5—m—p)

1.3...(2p—1) ¥ 1
ST % (m+1) (m+2)... (m+p) 2% .p! (m+1)(m+2)... (m+p)

)F(—-n, —2m—n; —n+t-m; )

F(=4n, —m—-in; —n+t-m; 1),

16:12. Definitiont of the function Wy, (2).

The solutions My, 1, (2) of equation (B) of § 16°1 are not, however, the
most convenient to take as the standard solutions, on account of the
disappearance of one of them when 2m is an integer.

The integral obtained by confluence from that of § 146, when multiplied

by a constant multiple of e¥?, ist
Wk,m (Z)
©0+) k-
=g T (k+} —m) etk [0 (kb (1 DT g,
2m1 2 o z

It is supposed that arg z has its principal value and that the contour is so

chosen that the point = —z is outside it. The integrand is rendered one-

valued by taking |arg (- ¢)| < and taking that value of arg (1 + #/z) which
tends to zero as £ — 0 by a path lying inside the contour.

Under these circumstances it follows from § 5'32 that the integral is an
analytic function of z. To shew that it satisfies equation (B), write

(
w=f e t2)f-t+mg=tqy,

* Bee Chapter x1v, examples 12 and 18, p. 298,

+ The funotion W}, (z) was defined by means of an integral in this manner by Whittaker,
loc. cit. p. 125,

% A suitable contour has been chosen and the variable ¢ of § 14'6 replaced by -t
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and we have without difficulty*

dv | (2k i m?+k(k— 1)
Ei_z_2+(_;_1) dz z*
_(]‘;_.;.+m) (0+)i (-k+im ]_+.t, k—i+me_t i
28 - dt z
=0;

since the expression in {} tends to zero as ¢ >+ %; and this is the condition
that e~ #2z"% should satisfy (B).

Accordingly the function Wi, (z) defined by the integral
1 k-%+4m
0 1. 3z f _py=k=fem ( —t
P (k+ m)e & (—1t) 1+ ) e~ tdi
is a solution of the differential equation (B).
The formula for Wi, m () becomes nugatory when & — % — m is a negative

integer. To overcome this difficulty, we observe that whenever
R ( - %-— m) <0

and k — ; —m 1s not an integer, we may transform the contour integral into

an infinite integral, after the manner of § 12-22; and so, when

R(k —%—m)gO,

Wim () = r(&_im)f reen (14 2) 7 o

This formula suffices to define Wi, (z) in the eritical cases when
m + %—k is a positive integer, and 50 Wi,m (2) is defined for all values of
J: and m and all values of z except negative real valuest.

E.ra.mple. Sﬂlve tvhﬂ equ&tioﬂ
du b ¢ 0
d&z e z

in terms of functions of the type Wi .. (2), where a, b, ¢ are any constants.

16:2. Expression of various functions by functions of the type Wi m (2).

It has been shewn? that various functions employed in Applied Mathe-
matics are expressible by means of the function Wy .. (2); the following are a
few examples:

* The differentiations under the sign of integration are legitimate by § 4* 44 corollary.

+ When z is real and negative, Wy ,.(z) may be defined to be either 117, ,, (2 +07) or
W3, e (2 = 0i), whichever is more convenient.

+ Whittaker, Bulletin American Math. Soc. x; this paper contains & more complete account
thnn is given here.



