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Definition 7.3. Assuming the notation and hypotheses in Lemma 7.2, we refer to
)= g
n>>—oo
as the holomorphic part of f(z), and we refer to
(2 = 3 6 (T (k - 1, 4xfnly)q”
n<0

as the non-holomorphic part of f(z).

Remark 17. A harmonic Maass form with trivial non-holomorphic part is a weakly holo-
morphic modular form. We shall make use of this fact as follows. If fi, fo € Hs ¢ (I") are
two harmonic Maass forms with equal non-holomorphic parts, then f; — fo € My, (T).

7.3. The £-operator and period integrals of cusp forms. Harmonic Maass forms are
related to classical modular forms thanks to the properties of differential operators. The
first nontrivial relationship depends on the differential operator

0
7.7 w = 20y" - —.
(7.7) § e
The following lemma'®, which is a straightforward refinement of a proposition of Bruinier
and Funke (see Proposition 3.2 of [63]), shall play a central role throughout this paper.
Lemma 7.4. If f € Hy_ (N, x), then
527141 : HQ*k(Nv X) - Sk(N7 Y)

is a surjective map. Moreover, assuming the notation in Definition 7.3, we have that
oo
S k(f) = —(@m)F 1Y ¢ (—n)n* g
n=1

Thanks to Lemma 7.4, we are in a position to relate the non-holomorphic parts of
harmonic Maass forms, the expansions

F7(2) = 3 e ()P (k = 1, dmnly)g”
n<0
with “period integrals” of modular forms. This observation was critical in Zwegers’s work
on Ramanujan’s mock theta functions.
To make this connection, we must relate the Fourier expansion of the cusp form & (f)
with f~(z). This connection is made by applying the simple integral identity

100 2minT
(7.8) / ( .(6 T dr =i(2mn)' % . T'(k — 1, 4mny)q "
=z (—i(t+=

This identity follows by the direct calculation

100 e2minT 100 2min(T—2)
dT/ —— dr =i 2mn) R T (k — 1, 4mny) ¢
/—z (—i(1 +2))7* oiy (—1T)%7F (2mm) ( y)a

15The formula for £&_j(f) corrects a typographical error in [63].
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In this way, we may think of the non-holomorphic parts of weight 2 — £ harmonic Maass
forms as period integrals of weight k cusp forms, where one applies (7.8) to

100 ZZOZI a(,n)eQm'm— p
. Cilr+ o
where Y "> a(n)q" is a weight k cusp form. In short, f~(z) is the period integral of the

cusp form &_x(f).
In addition to this important observation, we require the following fact concerning the
nontriviality of certain principal parts of harmonic Maass forms.

Lemma 7.5. If f € Hy (I") has the property that & (f) # 0, then the principal part of
f is nonconstant for at least one cusp.

T,

Sketch of the proof. This lemma follows from the work of Bruinier and Funke [63]. Using
their pairing {e, e}, one finds that {&_f, f} # 0 thanks to its interpretation in terms of
Petersson norms. On the other hand, Proposition 3.5 of [63] expresses this quantity in
terms of the principal part of f and the coefficients of the cusp form &_x(f). An inspection
of this formula reveals that at least one principal part of f must be nonconstant. O

7.4. The D-operator. In addition to the differential operator &_j, which defines the
surjective map

527k : HQ*k(Na X) - Sk(Na Y))
we consider the differential operator

(7.9) p—_L.d

T omi dz

We have the following theorem for integer weights.
Theorem 7.6. Suppose that 2 < k € Z and f € Hy_(N), then
D*N(f) € Mi(N).
Moreover, assuming the notation in (7.6), we have
Dk—lf _ Dk—1f+ _ Z C}O—(n)nk—lqn.
n>—oo

To prove this theorem, we must first recall some further differential operators, the Maass
raising and lowering operators (for example, see [63, 71]) Ry and Lg. They are defined by

0 0 0
Ry =2i—+ky ' =i (— — z—) + ky ™,
0z x
0 0
L _ _2 2_ - . 2 i - ]
A (ax“ay)
With respect to the Petersson slash operator (7.4), these operators satisfy the intertwining
properties

Re(f [x v) = (Bxf) lkt2 7
Li(f |k v) = (Lif) k=27,
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meromorphic continuation in s to the whole complex plane. If we form a vector
of Eisenstein series, indexed by the cusps, then the vector valued antomorphic
form will have a functional equation s — 1 —s.

3.9 Maass raising and lowering operators

The Maass raising and lowering operators are differential operators found by
[Maass, 1953] which have the property that when they are applied to an auto-
morphic function of weight & as in Definition 3.5.2 then they produce a new
automorphic function whose weight is either raised or lowered by 2. Without
further ado, let’s define these differential operators.

Definition 3.9.1 (Maass raising operator) Let k € Z. We define the Maass
raising operator Ry to be the differential operator
d a k a k

R =iy—4+y—+==(z—7)—+—.
: I}Bx yay 2 & Z)az 2

Definition 3.9.2 (Maass lowering operator) Let k € Z. We define the Maass
lowering operator L; to be the differential operator
d a  k k

a
Ly=—iy—+y——==—@2—-2)—=— .
k Yt Jay 3 ( Z)BE )

The following identities may be easily verified.

Ly=R4 Re=Ly, (3.9.3)

Ap=—LipR £ 1+ 4 Ry_oLy + £ 1 - (3.94)
i k+2 8% 2 2 = k—24k 2 ) =
Ao Ry = R Ay, Ny = Ep . (3.9.5)

Furthermore, the raising and lowering operators Rj, —Lj.» are adjoint oper-
ators with respect to the Petersson inner product (see Definition 3.5.5) and
satisfy (see [Roelcke, 1966], [Bump, 1997])

dxdy

—dxd
ff (ka)(z)-g(z) f f@-( ng)(z) 7 (3.9.6)

TCa(N)\b To(N)\D

which can be succinctly written in the form

(ka’ g) = (fa (_Lk+2g))u
where f € .A » (Do(N)) and g € A,H., (To(N)).
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Proposition 3.9.7 (R, raises weights by 2, L; lowers weights by 2) Fix
k,N € Z (with N = 1) and fix a character x (mod N). Let .A;X (To(N))
be the C-vector space of automorphic functions of weight k and character x
for To(N) as in Definition 3.5.2. If f € Azf_x (TC'o(N)) then

Ref € ALy, (To(N)), Lif € Ay, (To(N)). (3.9.8)
Furthermore, if Ay f = Af for some eigenvalue A € C, then

A2 (Re f) = A(Re f). Ag—a(Lif) = ML f). (3.9.9)

Proof First, note that (3.9.9) follows from (3.9.5).

Next, we will prove that

(Ref) |z @) @ = Re( (7], ) @),
((ka) e a) (z)= Lk( (f], @) (z)) (3.9.10)

for any o € I'p(N) and any smooth function f : ) — C.

It is easy to see that (3.9.10) implies (3.9.8). For example, since we assume
that f € Aj , (To(N)), one obtains immediately that (f], @) @) = x(@)f(2)
fora = (£4) € To(N). Consequently (Rif) |, @) (2) = x(@(Re)E).
We shall now prove (3.9.10) for the Maass raising operator Ry. The proof is
very similar for the lowering operator and we leave the details to the reader.

Leta = (¢}). Using the identity c(z — 2) = (cz + ) — (¢ + ), and the
fact that -7 = 0, we compute

k
i

(U9 0) (=05 +4) | (S8 7 (£59)]

cz+d\* k - 1 k g5
-(C2+d) .[(_EC(Z_Z)'czHi * E)f(m) N (cz+d)2f(a1)]
k (ci+d\T g fepadyl
_E(Cz-i-d) Floz) # (cz+d)? (cz—+5) flez). (3.9.11)

In a similar manner we have

cz+d\ T 9k
(Rep)| @)@ = (Cz = a,) : ((w —B)—+ 5) fw)

7+d\ ? k
=(C“ ) -(Ef(w) +(w—w)f'(w))

cz+d

—azth
W= Cred

azth
cz+d

(3.9.12)

w=
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One immediately observes that (3.9.11) and (3.9.12) are the same because

az+b ai+b 2=
=u cz+d cz+d (cz+d)*

(w— )

Proposition 3.9.13 (Action of Maass operators on Whittaker functions)
Letk € Z and let Ry, Ly, be the Maass raising and lowering operators, respec-
tively, as in Definitions 3.9.1, 3.9.2. Let r € R with r > 0. Then the action
of the Maass operators Ry, Ly on the Fourier-Whittaker expansion (Theorem
3.7.4) is given by

Rk(Wg‘v(ﬁl-Jrry) ; e?m'”') = Wi (dmry) - &,
2miry 2 k—1 ’ 2wirx
Lk(W§IU(4Jrry) Y Lo ) =—[|v:— — Wg‘],(ﬁlm'y) cetm

Ifr < 0, the action is given by

: k+1)? o
Rk(W,’:f_],(4JT|?'|)7) 5 ezﬁ'fl‘x) ! 2 (‘)2 o (T) ) W_L;iu(‘l'ﬂh"b’) . ezn'lr,\’

Li(W_g ,@lr] Y)Y = —W_izz (A lrly) - €77

Proof The proof follows from the Definitions 3.9.1, 3.9.2, and the recurrence
relations (3.6.7) after a routine calculation. 0

3.10 The bottom of the spectrum

Fix integers k, N with N = 1, and let x be a Dirichlet character (mod N).
To recapitulate, we have been studying the Hilbert space of smooth functions
f : h — C which transform by

k
f (““") = x(d) ( A ) F@ (3.10.1)

cz+d lcz +d|

for any (‘: '3) € T'o(N) and all z € h. We have defined L2 (To(N\B, k, x)
to be the space of all smooth functions satisfying (3.10.1) and the L*

condition o
xdy

f f If@P 22 < oo
To(N\b y:
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A much simpler space than £2 (To(N)\b, k, x) is the space L*(Z\R) con-
sisting of all smooth functions satisfying f(x + 1) = f(x), (Vx € R) together
with the £2 condition f(]] | f(x)]*> < oo. We showed in Chapter 1 that every
function in £*(Z\R) has a Fourier expansion f(x) = )", ; a,€*™"*, so that a
basis for the space is given by the exponential functions >™"* with n € Z. The

2 . .
exponential function is an eigenfunction of the Laplacian — a‘,itz with eigenvalue
4n’n?, ie.,

dz 2rinx 2.2 2winx
———e " =4rTnT e,
dx

The eigenvalues comprise the spectrum. The bottom of the spectrum is the
smallest eigenvalue. In the case of — ‘% acting on £(Z\R), the bottom of the
spectrum is () and this corresponds to the constant eigenfunction.

Similarly, [Selberg, 1956] decomposed the space £ (To(N)\h, k, x) into

a? il
ax? + ay?

satisfies the second order partial differential equation
Acf =2f,

where A = A(v) = v(1 — v). This conforms with Definition 3.5.7.

eigenfunctions of Ay = —y? ( ) + iky%. Such an eigenfunction f

Proposition 3.10.2 (Bottom of the spectrum) Fix integers k and N > 1.
Let x be a Dirichlet character (mod N). The operator Ay acting on the
Hilbert space L* (To(N)\b, k. x) has a self-adjoint extension and is bounded

below by
Ik k| ||
i R ol 8 QR i )
+(5)=2(-2)

If there exist elements of L* (To(N)\h, k, x) which have eigenvalue ). (%) .

then they are given by ym f(z) where f is a holomorphic modular form of
weight k and character y satisfying (3.3.5) if k > 0, or the complex conjugate
of such a function if k < 0.

Proof For a proof of the standard fact that the Laplace operator Ay has a self-
adjoint extension see [Iwaniec, 2002]. Now, consider a non-zero function f €
L2 (To(N)\b, k, x) satisfying Ay f = puf for some eigenvalue p € C. Since
Ay is a self-adjoint operator with respect to the Petersson inner product (see
Definition 3.5.5) we have

wlfe £ =(acf, f)={f. sf)=0{1 [

Because f # 0, (f, f) = 0it follows that 4 = 7 € R. To show that the clas-
sical holomorphic modular forms and their conjugates lie at the bottom of the
spectrum, we require the Maass raising and lowering operators Ry, L; defined
in Definitions 3.9.1 and 3.9.2. There is a natural connection between L; and
holomorphic modular forms. Indeed, it follows easily from the expression for




