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) = ~zD(d)d ~-'-~ ~ G(N)at_~(N)N -t  
\ d=  1 \ N =  1 

= y'xD(d)d ~-t-~ G(mn)m-~n -t  
\ d = l  1 n= 

= z o ( d ) d r G ( M N / d 2 ) ) M - S N  - ' ,  
M-- 1 N= 1 all(M, N) 

and this proves the lemma. 
We have now completed the calculation of (TMTIv)~ in all cases. Before 

stating the final result, we rewrite (59) in a form similar to (50): 

(TMTu)o~=�89 Z (dxp(d)+dx,(N/d))I,(MN/d2) if vp(N)<vp(M). (61) 
d[(M, N) 

To see that this holds, write N=pVNo, M=p~Mo with p.~N o. Then 

dzp(d)I~,(MN/d2) = ~ do)~p(do)Iv(pZ~MoNo/d~), 
dl(M, N) dol(Mo, No) 

dZp(N/d)Ip(MN/d2) = ~ dop~)~p(No/do)Ip(MoNo/d2) �9 
dl(M, N) dol(Mo, No) 

These expressions differ only by a factor zp(No), since clearly Ip (p2~ n)= pHp(n) 
for any n. Thus if Zp(No)= 1, (61) reduces to (59), while if zp(No)= - 1 both sides 
of (61) are zero (the left-hand side because N is not a norm). 

Summing up, we have proved: 

Theorem4. Let M , N  be positive integers, vp(N)~vp(M). Then the intersection 
number of the homology classes T~ and T~v on the compact surface X is given by 

TM Try = �89 ~ (dxv (d) + dzp (N/d)) (Hp (MN/d2) + Ip (MN/d2)), 
dI(M,N)  

where lip and Ip are the Jimctions defined in Equations (3) and (4) of the Introduction. 

Chapter 2: Modular Forms Whose Fourier Coefficients Involve Class Numbers 

Notation. We again fix a real quadratic field K. The discriminant of K is denoted D; 
the other notations concerning K ((_9, x', x ~ O, N(x), Tr(x)) are the same as in 
Chapter 1. As before, .~ denotes the upper half-plane; P~+ and P~_ denote the 
sets of real numbers =>0 and <0, respectively, N the set of integers ~0. For 
z ~ ,  nsZ,  we write e(z) for e 2~iz and z "/2 for ]zl "/2 e inarg(z)/2 with -~<arg(z)=<~. 

For k > 0  even, Mk(Fo(D),zD ) denotes the vector space of modular forms of 
weight k, level D and "Nebentypus" ZD, i.e. of functions f :  ~ C  satisfying 

,1, f \c z + d / =  ZD (a) (c z + d)kf(z) 

and which are holomorphic on .~ and at the cusps of Fo(D). The (infinite- 
dimensional) vector space of functions f :  .~--, C satisfying (1), with no holo- 
morphy conditions, is denoted M* (F o (D),)~D); such functions will be called "non- 
analytic modular forms" (of weight k, level D and Nebentypus). 
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2.1. The Modular Form <po(z) 

Let D be the discriminant of a real quadratic field. For N e N ,  set 

c (N) = H o (N) + I o (N), 

where 

H~ t~z H (  4 N ~  t - - - ~ 2 )  

t 2 < 4 N  
t 2 ~- 4 N  (mod D) 

(H(n) being the class number function defined in 1.2) and 

1 
I o (N) = 1/~ ~e,Ez~ o min (2, 2'). 

2 A ' = N  

We saw in Chapter 1 that, at least if D is prime, c(N) (N >0) represents the 
intersection number T~ T~ on an appropriate compactification of the Hilbert 
modular surface ~2/SL2((P), Ho(N) being the actual intersection number of the 
curves T 1 and T N on this surface and Io(N ) the contribution from the cusps. 
For N=O, c(N)= -1/12 is half the volume of the curve T 1. The main result 
of this chapter is that the numbers c (N) are the Fourier coefficients of a modular 
form in M 2 (F 0 (D), ZD)"  

Theorem 1. The function 

qgo(z ) = ~ c(N) e 2~INz (ze.~) 
N = O  

is a modular form of weight 2 and Nebentypus Zo for F o (D). 

This theorem is similar to various classical class number identities of 
Kronecker, Hurwitz and others (see bibliography) in which various expressions 
involving class numbers are shown to be equal to Fourier coefficients of modular 
forms. One such result, for example, due to Hurwitz [17], says that the expression 
c(N) in the case D =  I, i.e. the number 

Hi(N)+ ~ min(21, •2), 
2 =  (21, ~.2)~Z x Z 

2 1 , 2 2 > - 0  
~,1 '~2 = S 

is equal to 2a 1 (N) if N > 0, where tr 1 (N) as usual denotes the sum of the positive 
divisors of N; thus ~01(z ) is - ~ 2  times the normalized Eisenstein series 

E 2 ( z )  = 1-24 ~ al(N ) e 2~iNz. 
N = I  

(This is of course not a special case of Theorem 1.) We now describe briefly 
some other related results and generalizations of Theorem 1. 
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For any positive even integer k, we set 

Ck(N)=~,pk(t,N)H(4N--t2) 1 
- -  + - -  ~ min (2, 2') k- 1, 

, 1 / - f i ~  

where the summations are the same as in the definition of c(N) and pk(t, N)  is 
the polynomial defined by 

pk(t ' N ) =  (pk+-1 _pk-1)/(p+ _p_),  p• =�89 + ] / ~ - -  4N). 

Then the function q~D.k(Z)=~,Ck(N ) e 2niNz is a modular  form of weight k for 
the group F 0 (D) and character ZD and in fact a cusp form for k > 2. If k > 2 and 
D = 1, then the Selberg-Eichler trace formula [32] tells us that 

c k (N) = - 2 Tr (T (N), Sk (SL2 I,)), 

where T(N) is a Hecke operator on the space of cusp forms of weight k for the 
full modular  group, so the function r k (Z) is -- 2 times the sum of all normalized 
Hecke eigenfunctions in this space. The proofs of these results, as well as new 
proofs of the results of Cohen mentioned below and various generalizations, 
will be given in [36]. 

The other result related to Theorem 1 which we would like to discuss is due 
to Cohen [23]. Let r be an odd positive integer, and define an arithmetical 
function H (r, N) (N ~ N) b y / 4  (r, 0) = ~ (1 - 2 r) , /4 (r, N) = 0 for N -= 1 or 2 (mod 4), 
and 

H(r, N) = L(1 - r, ~(a) ~ d 2~-1 lq[ (1 - Za (P) P - ' )  
dlf pJd 

for N > 0 ,  N - 0  or 3 (mod4), where A <0  is the discriminant of Q(I/-L-~) 
and f is defined by - N = A f  2. This function generalizes the class number 
function I-I(N)=H(1, N) (cf. Eq. (15) and Proposition 1 of 1.2). We set 

the summation being the same as before. Then Cohen shows that, for r >  1, the 

function ~ Ho(r, N)e 2~iNz belongs to Mr+I(Fo(D), Zo). Thus for r >  1 no cor- 
N = O  

rective term like our ~ min(2,2') is needed. As with the case r =  1, there is a 

( 4 N - t 2  t generalization in which the terms H r, D in the sum above are weighted 

with a certain homogeneous polynomial in t and N, leading to modular  forms 
(in fact cusp forms) of higher weight. Unfortunately, Cohen's proof does not 
work for r = 1, although the starting point for both proofs, as we shall see, is the 
same. 

The basic idea is to express the numbers /4(N) as Fourier coefficients of a 
modular  form of half-integral weight. This suggestion was already made by 
Hecke [20] as a way of explaining the classical class number relations like the 
above-mentioned theorem of Hurwitz concerning /4~(N). Hecke pointed out 
that, by the formula of Gauss and Hermite, the number  r 3 (N) of representations 
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of N as a sum of three squares can be expressed in terms of class numbers: 

[12H(N)  

r3(N)=I~4H(4N) 

[ r 3 (N/4) 

if N = I  o r 2 ( m o d 4 ) ,  
if N = 3 (mod 8), 
if N = 7 (mod 8), 
if N = 0 (mod 4). 

On the other hand, r3(N ) is the N-th Fourier coefficient of 0(z) a, where 

O(z) = ~, q,2 (q = e2.i~) 
t~Z 

is a modular form of weight one-half; thus one should expect that the function 

3Of(z) = ~, H(N)q N ( z ~ )  
N=0 

is a modular form of weight 3/2, and then the number HI(N ) would be the 4N-th 
Fourier coefficient of the modular form ~ (z )  O(z) of weight 2. 

At the time of appearance of Hecke's paper, no satisfactory theory of modular 
forms of half-integral weight was known; such a theory has now been provided 
by Shimura ([33, 34]). However, one still cannot carry out Hecke's suggestion 
directly because, as we shall see, the function ~ ( z )  does not in fact transform 
like a modular form of weight 3/2. For  r >  1 odd, on the other hand, Cohen 

proves that the function ~ H(r, N)qN is a modular form of weight r+�89 (for 
N=0 

F 0 (4)) in the sense of Shimura, namely equal to the linear combination 

~ ( 1 - 2 r )  
22r+ 1 {(1 - -  i)E,+l/2(z ) -  iF~+l/2(z)} 

of the two Eisenstein series 

,~=1 . . . .  (mz+n) r+l/z' 
modd (n,m)= 1 

Fr+l/2(z)=z-r-1/2Er+l/2 (~Z ), 

whose Fourier coefficients were calculated by Shimura in the papers cited. 
For r = 1 we should like to apply the same idea and show that ~ ( z )  is equal 

to the linear combination 

: ( z )  = - ~ {0 - i) E~/~ ( z ) -  i v~/~ (z)} (1) 

of the two Eisenstein series of weight 3/2. However, the series defining E r + l / 2 ( z  ) 
diverges for r =  1. To overcome this difficulty, we use the well-known device 
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of Hecke [25] : we introduce the series 

Ea/z,~(z)= ~ (mz+n)a/21mz+nlZ ~ (ze~, seC), (2) 
m > 0  

(m, 2n)= 1 

which converges absolutely for Re(s)>�88 and transforms by 

(?;2 
E3/2'S\cz+d] (d) (cz+d)3/Z[cz+dl2SE3/z'~(z) 

for (~ ~)~F0(4 ) (for the definitions of (d) '  (~-~) 1/2etc" cf. [33]). This function 

is analytic in s, and by analytic continuation we obtain a function 
E3/z(z)=E3/2,o(Z) which is possibly not holomorphic in z but a least satisfies 
the transformation equation of a modular form of weight 3/2. We proceed 
similarly for F3/z(Z) and then define ~(z) by (1). The function ~(z) is periodic 
of period 1 and hence has a Fourier expansion ~ fN e2~u~, the coefficients fs  
possibly being functions of y =  Im(z). We will calculate these Fourier coefficients 
in the next section, finding that the N-th coefficient is equal to H (N) (independent 
of y) for N positive and to 0 for N negative except for N =  - u  2, u~_.. Thus ~(z) 
is the sum of 3r and a certain non-analytic expression involving the powers 
q_,2. In Section 2.3 we construct a theta series of weight 2 which will cancel 
the contribution from this non-analytic piece and create the term ~ min(2, 2') 
in the formula for c(N). The proof of Theorem 1 will be completed in Section 2.4. 

2.2. The Eisenstein Series of Weight 

At the end of the last section we defined a function ~-(z) which transforms under 
Fo(4 ) like a modular form of weight 3, and explained a reason for expecting a 
relationship between ~(z) and the function ~(z )=~H(N)q  N. In this section 
we will prove the following result. 

Theorem 2. For z ~ 8, we have 

~(z)=~f~(z)+y_l/2 ~ fl(4~zf2y ) q_f2, 
f = - o o  

where y=Im(z), q=e(z) and fl(x) is defined by 

o o  

Before proving this, we mention two corollaries. The first is a description 
of the way J~f'(z) transforms under Fo(4 ). 
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\ c z + d ] -  ( )=l-~n d/c ( t+z?/2 '  

where 0(t)= ~ e ( f  2 t) and the integral is taken along a vertical path in the upper 
half-plane. I~z 

Indeed, by the theorem, 

1 ~ . 1+i i~176 
~ ( z ) -  dt~ i~n y-  a/2 ! u- 3/20(2iuy-z) clu =l~n _ ~ ~ (z + v)- 3/20(v) dr, 

the integral being taken along the vertical path v = 2 iuy - z ,  1 < u < oo. Denote 
a t - b  

the latter integral by ~(z); then, substituting v = d' we find 
- c t +  

{az+b] ~C[az+b a t - b  ~-3/2 [ a t - b  ~ dt 
0 \c~-~]  =_~ \cz+d q - c t + d ]  0 \ - c t + d ]  (c t -d)  2 

= (cz+a)3/2 ~ (z + t)- 3/2 0(t)dt, 
--~, 

where in the second line we have used our knowledge of the behaviour of O(t) 
under F o (4). Thus 

(c z + , t)-  3/2 ~ \c~-$-a! - 0 (z) = - I (z + t)-  3/20 (t) a t .  
d/r 

The expression on the left, with ~O replaced by o~ is zero because ~- transforms 
under Fo(4 ) like a modular form of weight 3/2. The Corollary now follows from 

1+i  
the identity ~ -  dg= ~ O. 

We should mention that one result concerning the behaviour of oug under 
modular transformations was already known, namely the identity 

(2z/i)-3/2af ' + ~ ( z ) = - ~ 0 ( z )  3 -  z ~ e(r l + e ( 2 ~ z ) ,  
_ ~  1 ~  ~d~' 

found by Eichler [21]. 
The other consequence of Theorem 2 was pointed out to us by H. Cohen, 

namely, a "modular" proof of the Gauss-Hermite formula quoted in Section 2.1. 
To see that r3(8N+3)=24H(8N+3), for example, we observe that 

~,H(8N+3) qN=~ ~ e(-3r/8)~,ut~ ~ e(-3r/8)o ~[z+r~ 
,~mo~ ~ ,~mo~ ~ ~I' 

the terms involving q -I~ all dropping out because _f2 is never congruent to 
3 modulo 8. Therefore the function ~ H(8N+ 3)qN is a (holomorphic) modular 
form of weight 3/2 for some congruence group (in fact for Fo(2)), and since 
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I ~ '~24 r3(8N+3)qN is also such a form, one can prove the equality of the two 
functions by comparing finitely many of their coefficients. A similar argument 
works for coefficients belonging to the sequence 4 N + 2  or 4 N + 3  or to any 
other arithmetical progression not containing the negatives of any squares. 

We now give the proof of Theorem 2. Set 

O~s(Z)= - l  { ( 1 - i )  Ea/2,s(Z)-iF3/2,s(Z)} (Re(s)>�88 

where E3/2,s(Z) is the function defined by Eq. (2) of 2.1 and 

F3/2,s(Z ) = z -  3/2 Iz ]- 2SE3/2,s(_ 1/4z). 

Then o~(z) has an analytic continuation to the whole s-plane with ~o(Z)= ~(z), 
and on the other hand ~ is periodic in z with period 1 and therefore has a Fourier 
development of the form 

5~(z): ~ fN(s,y) qU 
N =  -- oo 

with fN(s, y) analytic in s. Theorem 2 will follow if we show 

[H(N)  if N > 0 ,  

] 1 1 - 1/2 
fN(0, y ) = { - ~ + ~ Y  if n = 0 ,  

[2y-1/2fl(arcfZy) if N = - f  2, f > 0 ,  

[0 if N < 0, - N ~ square. 

We begin by finding the Fourier expansion of E3/2,s(z ). Write 

- 1  1/2 3/2 2s n n -3/2 n -2s. 
( - - t  m- - ~ (--t~(z+--+hl Z+m+h E3/2,s(z) = 

m = l \  m / n ( m o d m ) \ m / h e Z \  m ] 

m o d d  

By the Poisson summation formula, 

~(z+h)-3/21z+h[-2s= ~ %(s,y)e(Nz) (z~)  
h~TZ N =  - oe 

with 
i y + ~  

% ( s , y ) =  ~ z-3/2]z]-2Se(-Nz)dz 
i y - -  o~ 

= y-  1/2- 2s e 2 nNy S (V + i)- 3/2 (/)2 ..~ 1)-s e ( - Ny v) dv 
-oo  

(the last formula is obtained by the substitution z = (v + i)y), and inserting this 
into the formula for E3/2, s we find 

E3/z,s(z) = ~ m -1-2s ~ 7m(--N) o~N(s,y) e(Nz) 
m =  1 N =  - oo 

modd 

= ~ E~ 2'~iNz, 
N =  -- cJo 
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where 7,. ( - N )  denotes the Gauss sum 

~ m ( - N ) =  m -1/2 ~ e(ng/m) (m odd) 
n ( r o o d  , . )  

and EOd~ (s) the Dirichlet series 

E~ (s) = ~ ~., ( - N)  m- s. 
m = l  

m o d d  

A similar calculation for F3/2.s(z ) gives 

F3/2.,(z)=22"+ 3i+(l +i) ~ E_~ tq + 2s)c~N(s,y) e2~INz 
N =  -- oo 

with 

EV~ n (s) = ~ 7m (-- N) (m/2)- s, 
m = l  

m e v e n  

the Gauss sum ~m(-N) now being defined by 

- 1 / 2  m 

7m(- N) n(mod2m) (n ) in~2 = m ~ -- e (N n/2 m) (m even). 

(The constant term 22s+3i comes from the term m-- l ,  n = 0  in (2).) Thus the 
Fourier expansion of ~ ( z )  is 

22' 1 - i  oo 
o~(z)= 12 48 N= ~ -o~ 

E_N(I + 2s) eN(s, y)q N 

with 

E_ N(s) =�89 (E~ + E_N (s)). 

The Gauss sums ~,"(-N) and the Dirichlet series E~ Ee~} n and E N are 
evaluated in [15], w Theorems 2 and 3. It turns out that E N(s)=0 identically 
if N is congruent to 1 or 2 (rood 4), while if N • 0 is congruent to 0 or 3 (rood 4), 
then 

E-N(s)= ~ (2s)-I L( s, Zd) ~ #(a) zn(a) c- 2s+1 a-S, (3) 
a , c >  O 

a c l f  

where d is the discriminant of Q ( 1 / -  N), ~d the associated character, and f the 
number defined by - N  =df  2. Finally, for N = 0  we have 

E o (s) = ~ (2 s - 1)/{ (2 s). 

We are interested in finding the value of the Fourier coefficients 

1 - i  ~ - 2 2 ' / 1 2  if N = 0  
fN(s, Y) = -4-8 E-N(I+2s)~N(s'Y)+~O if N4:0  

at s=0 .  
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The integral defining an(s, y) can be evaluated easily at s=0 :  

an(O'Y)={O41r(l+i)N1/2 ifif N>0,N<0. 

If N is positive, formula (3) shows that E_N(s) is holomorphic at s = l  with 

E n ( 1 ) = ~ L ( 1 ,  Zd) ~ #(a) xd(a)/a c 
aclf 

= 6 N -  1/2 L (0, %a) ~, k 1--I (1 - %~ (p)/p) 
k l f  p[k 

6 N_I/2H(N ) = - -  

(we have used the functional equation of L(s, Xd)), SO fn(0, Y)= H(N) as claimed. 
If N is negative but - N is not a square, then the number d in (3) is the discriminant 
of a real quadratic field and so L(s, Xn) and hence E_ N(s) are holomorphic at 
s =  1; this, together with an(0, y)=0, implies that fN(0, y)=0. It remains to treat 
the case N =  _ f 2 .  

First, if N =  _ f 2 ,  f > 0 ,  then 

E N(s ) = ~(2s) -1 ~(s) ~/~(a) c- 2 s + l  a-S 
aclf 

has a pole of residue ff (2)- 1 at s = 1, so 

1 - i  
fN(0, y ) -  16re 2 a~(0, y), 

where 

0 an(s, y) s= o a~(0, y)=~s  

oo 

= _ y-  1/2 eZ,~nr S (v + i)- 3/2 log(v 2 + 1) e ( -  Ny  v) dv 
- o o  

1 /2  + ioo  

= - ( 2 i y )  -1/2 S u-3/2e4':nr"log{4u(1-u)}du 
1 / 2 - -  ioo 

(the last equation is obtained by substituting v = 2 i u - i ) .  We deform the path 
of integration in the last integral to a path in the cut plane ~ - [ 1 ,  ~ )  which 
circles the cut clockwise from i e + oo to �89 to i e -  ~ .  Across the cut, log {4 u (1 -u)} 
jumps by 2hi  and the other terms in the integrand are continuous. Therefore 

~X3 

a~v (0, y) = - 2 n i (2 i y)- 1/2 ~ u - 3/2 e- 4 ~ In ly, du = - 16 ~2 (1 + i) y-  1/2 fl (4 n IN I y) 
1 

and hence 

fN(O,y)=2y-1/efl(4rcf2y) (N= - f 2  <0) 
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as claimed. Finally, for N = 0 we have 

1 1 - i  1 1 
f~ 12 32n 2~t~(0'y)= 12 8~Z y- l /2 '  

because E o (s)= ((2 s -1) / ( (2s )  has a pole of residue 3/n 2 at s = 1. This completes 
the proof of Theorem 2. 

2.3. A Theta-Series Attached to an Indefinite Quadratic Form 

If F is a positive definite quadratic form in 2k variables, and L c I R  2k some 
lattice on which F takes integral values, then the associated theta-series 

e 2"izv~a) ( z ~ )  is a modular form of weight k (of some level and for some 
2 e L  

quadratic character depending on F and L); similarly, the series ~ p(2)e z~zF~a), 
where p(2) is a homogeneous polynomial of degree m which is spherical with 
respect to F, is a modular form of weight k +m (for precise statements and 
proofs see [30] or [24]). If, on the other hand, F is an indefinite form, then these 
series diverge because [e2~i~vt~) I grows exponentially in I),21 in the cone F(2)<0. 
To obtain a convergent series, we can either allow the coefficient p(2) to be a 
non-analytic (or piecewise analytic) homogeneous function of 2 which is identi- 
cally zero for F(2)<0,  or allow p(2)=pz(2) to depend on z in such a way that 
p,()`) is much smaller than e - 2 n i z v ( ~ ' )  as  [21-~ or. If the function pz(2) is chosen 
in such a way that the Fourier transform (with respect to 2) of p=(2)e 2~rt~)  
equals z- 'p_l/z(2 ) e-2.~Ftz)/~ for some r, then the same proof as in the classical 
case (namely, by application of the Poisson summation formula) shows that 

P,(;O e2"i~Fta) is a modular form of weight r. In this section we shall construct 
such a modular form, of weight 2, associated to the norm form of the quadratic 
field K, i.e. F will be the indefinite form F(21,22)=21 22 on R2 and L will be 
the lattice (9, embedded in R2 by x ~-+(x, x'). Our coefficient function p,(21, 22) 
will be 

2fl(ny(21_22)2)_S�89 , I).21) if ).1).2>0, 
if 2122~0,  

where 
oo 

f l ( X ) = l - ~ I u - a / 2 e - ~ d u  ( R e x > 0 )  
1 

is the function defined in Theorem 2. 
We will need some properties of the function fl(x) and of the related function 

m u 2 + 2 n i a u d U  
f ( a , x ) = ~ e -  - -  (a~lE, x ~ l E - ~ _ ) .  

x U 

These functions are related to the standard "complementary error function" 

oo 

erfc(x) = ~ e -"~ du (xeff~) 
x 
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by the formulas 

fl (x) = ~ (e- ~ - ~ erfc (l/x)) (4) 

(which also gives the analytic cont inuat ion of fl(x) to C -  IR_) and 

(3 f (a, x) = i 7z a/2 e-  ~2 ,2 erfc(x + i zt a). 
Oa 

The propert ies we need are summarized in the following lemma. 

Lemma  1. The functions fl, f and erfc satisfy the identities 

a) ~ fl(ct2)e2ni'X d t=  ~-~6 ~z- 5/2 cl/21-e-nEx2/c 
X2 

- - o 0  

b) ~ 1 - e - ' ~  eEl ,  x dx = 161t 3/z ~1/2 fl(~z2 tz/ct), 
X 2 

- - o 0  

c) erfc(x) + e r f c ( - x ) =  2, 

d) f ( - a, - x ) -  f (a, x) = irc erfc (r~ a) (x 6.~). 

Proof a) is obtained easily by substituting the definition of fl into the integral 
and inverting the order of integration, and b) by differentiating both sides of 
the identity with respect to ~; alternatively, b) can be considered as the inverse 
Fourier  t ransform formula to a). Formula  c) is s tandard and easy: one sees by 
differentiating the left-hand side that  it is a constant ,  and the constant  is found 
by setting x = 0 .  Finally, the function f ( - a , - x ) - f ( a , x )  is defined for a e C ,  
x ~ C - l R = . ~ u - . ~ ,  and its derivative with respect to x is identically zero, so 
for fixed a this function has a constant  value q~+(a) for x in the upper half-plane 
and a constant  value q~_ (a) for x in the lower half-plane. Differentiating with 
respect to a, we find 

d d-a cp+ (a) = -2 i~z  3/2 e - ~ 2 0 2  , 

SO 

q~ + (a) = i n erfc (zt a) + c + 

for some complex constants  c+ and c_. Interchanging the roles of (a,x) and 
( - a ,  - x )  in the definition of  tp+(a) leads to 

~ o + ( - a ) =  - (p~ (a), 

which, together with c) of the lemma, implies c+ + c_ = - 2 n  i. Finally, it follows 
by the calculus of residues that  

lim ( f (a ,  x - i e) - f (a, x + i e)) = 2 n i 
ex, O 

for x real and negative, and this implies c + - c  =2~i .  Hence c + - 0  and 
c = - 2 h i ,  so q~+(a)= _+in erfc(_+rca). 

We are now in a posi t ion to construct  our  non-analyt ic  theta-series. 
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Proposition 1. For z~.~, define continuous complex-valued functions Uz, Vz and W z 
on R z by 

U~ (2, 2') = 2 y -  1/217 (rt y (2 - 2')z) e (2 2' z), 

(2, 2,)=J" �89 min(12[, 12'l)e(22'z) if 2 2 ' > 0 ,  
Vz 10 if 2 2 ' < 0 ,  

Wz(L 2')= Uz (2, 2 ' ) -  V~ (2, 2'), 

where y=Im(z) .  Let 17V denote the Fourier transform of W: 

Wz(#,P)= S S Wz(2 ,2 ' ) e ( -2# -2 '# ' )d2d2 ' .  
- o o  - o o  

Then 

~ , = Z - 2  ~ ( # , # )  w_l/z(#, #'). (5) 

Corollary. The function 

~(z)= ~, w=(2, 23 (z~)  

is a non-analytic modular form of weight 2, level D and Nebentypus Zo. 

Proof We calculate the Fourier transforms of U z and Vz separately. First, in 
the integral defining 0 z we substitute 2' = 2 + t and use a) of Lemma 1 : 

oo 

U z ( # , # ' )  = ~o J" e(-2#-2'#')U:(2,2')d2'd2 
- oo  - oo  

=2y -'i2 S e(2(z2--#--#'))  ~fl( rcyt  2) e ( ( z 2 - # ' ) t ) d t d 2  
- o o  - c 1 3  

1 ~- 1 - e  -~(za-"')2/y 
= 8 n  2 -~J" (z2_#,)2 e(z22--#2--# '2)  d2" 

Substituting 2 =u + #'/z and applying b) of Lemma 1, we find 

~ , 1 e 2 n i z u 2  - -  e- n [ZI2U2iy 

Uz(V,#)=8~-z j2e ( -#p ' / z  ) S u2 e ( (# ' -# )u)du  
- c o  

=2Z -2 e(-##' /z){izly-a/zf l(Tzy(p-#')2/lz[Z)-wll2fl(x(#-p')2/w)} 

= z-  2 U 1/z (#, #') + 8 w- 3/2 e ( - # if/z) fl (~z (# - #')2/w), 

where in the last two lines we have set w=2z/i ,  so larg(w)l< 7. For l? z we find 

IT"z( #, #')= T(#, #')+ T ( -  #, -#')+ T(#', #)+ T ( -  #', -#) ,  

where 

T(# ,# ' )= �89  ~ 2e(zXX'-2#-X'p')d2'd2. 
o _<__ ~._< ~., 
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In this expression we perform the Z-integration and substitute 2=u+#' / z  to 
obtain 

i T ). 2 
T(U,# ' )=~-  j ~ e ( z 2  - # 2 - # ' 2 )  d2 

~rr  0 Z A - - #  

i ~ u+#'/z  
= 4 ~ z  e ( -  p #'/z) r 2-u # + u #') du 

- ,u' lz  U 

= - - w  e( - (#-p ' )Z /4z )er fc  i(#'+#) 
4~ 

+ ~ z -  e ( - p # ' / z ) f  \ l / rcw,2 i# '  . 

Adding to this the corresponding formula for T ( - # ,  -# ' )  and using c) and d) 
of Lemma 1, we find 

T(#, p ')+ r ( - # , - # ' )  

1 ( ~nw) = - - w - 3 / 2 e ( - ( g - g ' ) Z / 4 z ) + � 8 8  sign(#')(#'- #) . 
2re 

Adding to this the formula obtained by interchanging # and #', and using 
again c) of the lemma as well as Equation (4), we find after a short calculation 

(#, #') = z-  2 V 1/z (#, #') + 8 w-  a/2 e ( - # #'/z) fl (n (# - #')2/w). 

Comparing this with the result for 0~ we obtain Equation (5). 
The proof of the corollary is now essentially the same as the standard proof 

that theta-series associated to definite quadratic forms are modular forms, as 
given in [30], Chapter VI or [24], pages 81-87. We recall briefly how the argument 
goes. As well as the series ~V(z), one must consider the sums 

~(z)= Y. Wz(,~+v,,V +v') 
).E~) 

over the translated lattices ~+v ,  where v belongs to the inverse different 
b- l=(1/ l /D) .  Clearly ~ depends only on the residue class of v (rood(9), so 
there are only D distinct functions ~V v, with ~o = ~ Then 

~/~(z + 1)= ~ W~(2+ v, 2 '+ v') e(N(2+ v)) =e(Nv) ~ ( z ) ,  

since N(2+v) -N(v)~7 l  for 2 ~ ,  v~b -1. On the other hand, by the Poisson 
summation formula 

~t/~(z) =D- ' / z  Z IYCz(P,P')e(Trpv), 
#eb  - 1 

and combining this with (5) we find 

z -2" l~ ( -1 / z )=D -1/2 ~ e(Tr#v)Wz(p,# ' )=D -1/2 ~ e(Trpv)~Wu(z). 

Thus we have 

~//~ I T=  e (N v) ~q/~, ~#~lJ=O-l/Z~e(Tr#v)~r (6) 
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where T and J are the matrices and - 1  

bd) (az + b~ (~ denotesthefunction(cz+d)-2~l/~\c~].Since T a n d J  generate F, 

we obtain a representation of F in the space generated by the D functions ~/r163 
The first step in the proof of the Corollary is to show that the Equations (6) 
imply ~V~IA=3r ftir A in the principal congruence group F(D). The argument 
is given in 1-24], pages 85-87. Now to show that ~o transforms under Fo(D ) 

like a modular form of Nebentypus, we take A=(a  ~ set 
\ C  al 

R= T"JTaJT"J. Then R =  (~ o)(modD), so, choosing xeT] with d x - b  (modD), 
~ v  

we find A=A'TXR with A'eF(D) and hence ~ o l a  =~o lR .  But from (6) we find 

ff~vv ] z a J  = D -  1/2 e (a N (v)) ~ ~ e (Tr p v) 
/z 

and hence 

[R = ((fr [ T"J)[ TaJ)[ T"J 
= D -  3/2 E E E e(aNv+dNp + a N 2  +Tr(kt v + 2 # +  x 2)) ~r 

2 K 

=D- 3/z ~ CCr~ ~ e(Tr ;t'(x-av'))~ e(dN(g+a2' +av')). 
tr 2 it 

Replacing # + a 2 '+ a v' by # in the inner sum, we see that this sum is equal to 
the standard Gauss sum 

e (dN p)= D1/Z )~D(d). 
lteb - 1/~ 

Hence 

[R = D-I zo(d ) ~ ~ ~, e (Tr 2'(x - a v')) = )~o(d) ~,v, 
K 2 

(the inner sum is zero if x .av ' ) .  In particular, taking v = 0 we find ~o I R = Zo (d) ~o,  

and this completes the proof that ~olA=)~D(d)~o for A= (~ bd)eFo(D). 

2.4. Proof of Theorem 1 

We proved in Section 2.2 the identity 

o~(z)= ~ H(N)qN + y -1/2 ~fl(41ru2y) _,2 q , 
N =  0 u e Z  

where as usual q =e(z) and y = Im(z) and ~- is a function satisfying 

[az+b~ 
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for (a b/~Fo(4)(and of course c#:0). The function 0(z)= ~ q : ,  on the other 
\ C  te2g 

hand, satisfies 

[az+b~= - 
O \cz+d] ( ~ - )  l/2 (d)(Cz+d)l/20(z) 

for (~ bd)~Fo(4 ). It follows immediately that 

iDaz§247 
\ cz+d] \cz+d! 

( aDz+bD ~ (az+b~ 
=: \(c/D)Dz+d/ 0 \c~d/ 

= (@)1/2 (~D_)(cz+d)3/2 : ( D z ) ( @ ) - t / z  (d)(cz+d)~/20(z) 

= (D) (c z + d)2~.~(D z) O(z) 

for (~ bd)eFo(4D), i.e. the function 

~(Dz) 0(z)= ~ cN(y) qN, 

cs(Y)= ~ " (~ f~)+D-~/2Y-X/z  ~ /~(4rc u2y), 
t 2 < N t ,  u s Z  

t 2 --= N ( m o d D )  t 2 - D u 2 =  N 

belongs to M*(Fo(4D), Xo). We claim that the function ~ c4N(�88 belongs to 
M*(Fo(D),•o). The corresponding statement in 1-231 (Proposition 5.1) is proved 
by appealing to Lemmas 1 and 4 of 1-29"1; however, since this latter paper treats 
only analytic modular forms, we give the proof of the special assertion we need: 

Lemma 2. If  f (z) = ~ a, (y) q" is in M* (F o (4D), XD), and a, (y) = 0 for all n = 2 (mod 4), 
then the function ,~z 

4 

h(z)=�88 ~ f (z~4f)= ~'.a4,(�88 
e =  1 n e Z  

is in M~ (F o (D), ZD). 

Proof We prove the lemma in two steps, first showing that the function 

(: 
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is in M*(F0(2D),~D). Set Xo=  (~ ~), X~= (~ 

matrix in F o (2/)). If b is even, then the matrices 

XoAXo~ = a X ~ A X { I =  2c 2c 

are in Fo(4D ), so 

F. Hirzebruch and D. Zagier 

~) a n d l e t A = ( ~  ~) b e a n y  

� 8 9  
d - c  - c ) )  

g (A z) = �89 f (X o A X o  1 (X o z)) + �89 f (X x A X ?  l (X 1 z)) 

= �89 ~o (d) (c z + d)kf (X o z) + �89 ZD (d - c) (c z + d)kf (X a z) 

= zo  (d) (c z + d) k g (z), 

the last equality holding because x v ( d - c ) =  zv(d). If b is odd, then the matrices 

( X o A X 1 1 =  
\2c d - c  ! 

are in F o (4D), so 

g (A z) = �89 f (X o A X~ 1 (X 1 z)) + �89 f (X 1 AXo 1 (X o z)) 

= �89 Zo ( d -  c) (e z + d)kf (X a z) + �89 ZD (d) (c z + d)kf (X o z) 

= zo  (d) (c z + d) k g (z). 

This proves the assertion concerning g. Under the assumptions made on f, 
a2.( �89 for n odd, so 

g (z) = g (z + �89 = Z a4, (�89 y) q2. = h ( 2 z). 

Let A =  (~ bd)eFo(D). The formulas just given for the four matrices X,  AXF1 

(~, fl=0, 1) show that at least one of these matrices lies in Yo(2D); then 

h(a z) = g(X, AX~ 1 (Xtj z)) = zo(d)(c z + d) a g(Xa z) = zo(d)(c z + d) a h(z). 

We now apply this lemma with f ( z )=~(z)O(z) ,  a,(y)=c,(y). The fact that 
cu(y)=0 for N - 2  (mod4) follows from the fact H ( n ) = 0  unless n - 0  or 3 (mod 4) 
and from D~-0 or 1 (rood 4). Thus ~ cau(�88 N is in M* (Fo(D), XD). But 

( 4 N - t 2 )  
C4N(�88 ~ H ~ +2D-V2y  -1/2 Z fl(~Du2y) 

t2<-4N t, ue l  
t 2 ------ 4 N ( m o d  D)  N = (t 2 - Du2)/4 

=HD(N)+ 2D-I/2y -1/2 ~ fl(rt(A-2')2Y), 

2 ; t ' = N  

so this means that the function 

H~(N) q~ + 2D-~/2y -1/~ Z ~(~(~- Z)~ Y) q~' 
N=O ;~r 
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is in M*(Fo(D), ZD)" On the other hand, by the Corollary to Proposition 1, we 
know that the function 

- D-1/2 ~I/'(z)= D -1/2 ~, min(2, 2') qa~' _ 2D-1/Z y-1/2 2 f l ( l t ()~--  2 ' )2Y) q~'  
2e~ 2e~ 
2~'0 

is also in M*(Fo(D), Zo). Adding these two functions, we find that the function 

~~ ~ Ho(N)q N+D-1/2 E min(2, 2 ' )q~'  
N= 0 2~r 

2~0 

is in M~(Fo(D), Zo). Since the N-th Fourier coefficient of qgo(z ) is independent 
of y and is O(N ~) for some r (in fact, for r =  1), the function ~oo(z) is analytic in 
the upper half-plane and is O(y -~) as y ~ 0 ,  which implies that ~oo(z ) is holo- 
morphic at the cusps of F 0 (D). Hence ~ODeM 2 (Fo(D), Zo). 

Chapter 3:  Modul ar  F o r m s  with Intersection N u m b e r s  as Fourier Coef f ic ients  

3.1. Modular Forms of Nebentypus and the Homology 
of the Hilbert Modular Surface 

In Chapter3 we return to our Hilbert modular surface X=~2/SL2((~), again 
supposing that the discriminant of the quadratic field K is a prime p -  1 (mod 4). 
The middle homology group Hz(J~ ) (all homology and cohomology is with 
coefficients in I1~ unless otherwise stated) of the compactification 37 = X w U sk 
of x is the direct sum of Im(H2(X )--*H2(J~)) and the subspace generated by 
the homology classes of the curves Sk, the two subspaces being orthogonal 
complements of one another with respect to the intersection form. In the first 
component lie the homology classes T~ (N=  1, 2, ...) defined in 1.4 and one 
further important class which we now describe. 1 

On .~x.~ we have two differential forms c q j = - ~ y f Z d x j A d y j  ( j = l ,  2), 

where z~=-x~+ iy~ ( j=  1, 2) are the coordinates. Each o)j is an SL2(lR)-invariant 
form on .~, so co I and 0) 2 are SL2(r they can therefore be considered 
as differential forms on the smooth non-compact surface X' obtained from X 
by removing the finitely many singular points (quotient singularities). The sum 
~o 1 + co 2 is the first Chern form c 1 on X', while the product ~o =o31 ^ 0) 2 is the 
second Chern form (Gauss-Bonnet form) c2; clearly clAc~=2c 2. Then ([4], 
1.3, Eq. (9)) 

c 1 ̂  c 1 = 2 ~ co = 4~K(- -  1), (1) 
X' X" 

where (x(S) (ssff~) denotes the Dedekind zeta-function of K. On the other hand, 
in ([4], p. 229) it is shown how the forms co i can be modified by coboundaries 
to obtain differential forms with compact support in X'; extending these forms 
to 2 D X' by 0 on the complement of X', we obtain differential forms on 2 
representing cohomology classes in Im(H~(X')~HZ(fC)), or equivalently (by 
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called either the Sturm bound or the Hecke bound in the literature. A more

modern reference is Section 9.4 of [Stein (2007)].

Theorem 3.13 (Sturm [Sturm (1987)]). Let Γ ∈ SL2(Z) be a congru-

ence subgroup of index M and let f ∈ Mk(Γ) be a modular form. If

ν∞(f) > M · k

12
then f is identically zero.

Proof. If Γ = SL2(Z) then we can prove this immediately by considering

the residue theorem (3.1), as we did above; if f has a zero of order greater

than k/12 at ∞, then it must be zero, because the right-hand side of the

residue formula (3.1) is k/12, and all of the elements of the left-hand side

are non-negative.

We now use the fact that Γ is a subgroup of finite index of SL2(Z); this

means that we can write

SL2(Z) =

M⋃

i=1

Γγi,

for some finite set of γi ∈ SL2(Z). Without loss of generality, we can assume

that γ1 = I. We define a modular form F by

F := f ·
M∏

i=2

f |[γi]k;

we will now show that F is a modular form for SL2(Z), so we reduce it to

a case that we have solved. We note that each of the f |[γi] is a modular

form of weight k for a suitable congruence subgroup, by a variant of the

argument before Proposition 2.20.

To show that F is a modular form for SL2(Z), we need to show that it

transforms correctly under the action of SL2(Z). This will follow because

allowing an element g ∈ SL2(Z) to act on the right permutes the γi, so the

product is left unchanged. This means that F is not just a modular form

for Γ, but a modular form for the full modular group.

We see that F has weight kM , because it is the product of M weight k

modular forms, so we now apply the theorem in the level 1 case to obtain

the bound. �

Remark 3.14. We see that the bound is in fact sharp in general for SL2(Z);

if we consider the modular form ∆i, we see that it has a unique zero of exact

multiplicity i at ∞, so we cannot replace the strict inequality with a non-

strict inequality.
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