GITTER UND ELLIPTISCHE FUNKTIONEN

Ein Gitter $\Lambda \subset \mathbb{C}$ ist eine Gruppe

$$\Lambda = \langle \omega_1, \omega_2 \rangle = \omega_1 \mathbb{Z} + \omega_2 \mathbb{Z} \subset \mathbb{C},$$

die von zwei linear unabhängigen (über \mathbb{R}) Perioden ω_1 und ω_2 erzeugt wird. In anderen Worten, es gilt $\omega_1\mathbb{R} + \omega_2\mathbb{R} = \mathbb{C}$. Für $a \in \mathbb{C}\setminus\{0\}$ kann das Gitter Λ um a skaliert werden, um ein neues Gitter $a\Lambda := a\omega_1\mathbb{Z} + a\omega_2\mathbb{Z}$ zu erzeugen. Wir ordnen Erzeuger ω_1 und ω_2 von Λ stets so, dass $\omega_1/\omega_2 \in \mathbb{H}$.

Bisher haben wir in diesem Seminar Modulformen als Funktionen in einer komplexen Variable $\tau \in \mathbb{H}$ betrachtet. In diesem Vortrag führen wir eine äquivalente Definition von Modulformen ein.

Sei nun f eine Funktion, die jedem Gitter $\Lambda \subset \mathbb{C}$ einen Wert $f(\Lambda) \in \mathbb{C}$ zuordnet. Dann können wir f als Funktion auf den Erzeugern ω_1 und ω_2 betrachten, also $f(\omega_1, \omega_2) = f(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$. Wir nennen eine solche Funktion holomorph, wenn sie jeweils holomorph in den Erzeugern ist (während der andere fixiert wird).

Definition. Eine Modulform auf Gittern vom Gewicht k ist eine holomorphe Funktion auf Gittern $\Lambda \subset \mathbb{C}$, die zustzlich homogen vom Grad -k ist, das heißt

$$f(a\Lambda) = a^{-k} f(\Lambda)$$

für $a \in \mathbb{C} \setminus \{0\}$.

Als Beispiel definieren wir für k > 2, die Eisensteinreihen durch

$$G_k(\Lambda) := \sum_{\omega \in \Lambda \setminus \{0\}} \frac{1}{\omega^k}.$$

Wir werden diese später mit den bereits definierten Eisensteinreihen als Funktionen in einer komplexen Variable $\tau \in \mathbb{H}$ vergleichen.

Im Folgenden benötigen wir eine Hilfaussage über Gitterbasen.

Lemma. Sei $\Lambda = \langle \omega_1, \omega_2 \rangle$ ein Gitter in \mathbb{C} . Dann erzeugen λ_1 und λ_2 das gleiche Gitter Λ genau dann, wenn

$$\lambda_1 = a\omega_1 + b\omega_2 \text{ und } \lambda_2 = c\omega_1 + d\omega_2$$

für eine Matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbb{Z})$ gelten.

Zu einer Funktion F auf Gittern können wir eine Funktion \widehat{F} auf der oberen Halbebene durch

$$\widehat{F}(\tau) := F(\Lambda_{\tau})$$

assoziieren, wobei Λ_{τ} das von τ and 1 erzeugte Gitter ist. Umgekehrt können wir zu einer Modulform auf der oberen Halbebene f vom Gewicht $k \in \mathbb{Z}$ eine Funktion auf Gittern durch

$$f^*(\omega_1, \omega_2) := \omega_2^k f\left(\frac{\omega_1}{\omega_2}\right)$$

definieren. Beweis Sie nun, dass beide Abbildungen wohldefiniert sind und die Definition von Modulformen auf Gittern äquivalent zur vorherigen Definition ist.

Theorem. Sei $f: \mathbb{H} \to \mathbb{C}$ eine Modulform vom Gewicht k und F eine Modulform auf Gittern vom Gewicht k. Dann ist \widehat{F} eine Modulform vom Gewicht k, f^* eine Modulform auf Gittern vom Gewicht k und es gilt $\widehat{(f^*)} = f$ und $(\widehat{F})^* = F$.

Zeigen Sie weiterhin, dass die Eisensteinreihen $G_k(\Lambda)$ und $G_k(\tau)$ im oben beschriebenen Zusammenhang

$$G_k(\omega_1, \omega_2) = \omega_2^{-k} G_k \left(\frac{\omega_1}{\omega_2}\right)$$

stehen.

LITERATUR

- [1] E. Freitag, R. Busam, Funktionentheorie 1, Springer-Verlag, Berlin, 2006, 1–537.
- [2] M. Koecher und A. Krieg, Elliptische Funktionen und Modulformen, Springer-Verlag, Berlin, 1998, 1–331.