CHAPTER 1

The Elementary Theory of Partitions

1.1 Introduction

In this book we shall study in depth the fundamental additive decomposition
process: the representation of positive integers by sums of other positive
integers.

DEFINITION 1.1. A partition of a positive integer n is a finite nonincreasing
sequence of positive integers 4, 4,,. .., 4, such that ., A, = n. The 4, are
called the parts of the partition.

Many times the partition (4,, 4,,. .., 4,) will be denoted by 4, and we shall
write 1 F n to denote “A is a partition of n.” Sometimes it is useful to use a
notation that makes explicit the number of times that a particular integer
occurs as a part. Thus if A = (4, 45,. .., 4,) - n, we sometimes write

1= (1!:2!13!:. -4)

where exactly f; of the 1, are equal to i. Note now that ) ;;, f,i = n.

Numerous types of partition problems will concern us in this book;
however, among the most important and fundamental is the question of
enumerating various sets of partitions.

DerFINITION 1.2. The partition function p(n) is the number of partitions
of n.

Remark. Obviously p(n) = 0 when n is negative. We shall set p(0) = 1 with
the observation that the empty sequence forms the only partition of zero. The
following list presents the next six values of p(n) and tabulates the actual
partitions.

p)=1: 1=();

p)=2: 2=(), 1+1=(%;

pP3) =3 3=@3), 24+1=(2), 14+1+1=(%;

=5 4=, 3+1=(13), 2+2=(2),
241 41=(%2), 1+14141=01%;
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2 The Elementary Theory of Partitions Chap. 1.1

p5)=7: 5=(5, 4+1=(149, 3+2=(23),
341 4+1=(13%3), 24241=(12Y,
24141 41=(3%2), 1+1+14+14+1=(1%;
p6) =11: 6=(6), 5+ 1=(15, 4+ 2= (29,
4+ 1+1=(%), 3+43=03%H), 3+2+41=(23,
341 4+141=(1%3), 242+2=2Y,
24241 41=(122%, 24+14+14+1+1=(1%),
l+14+1+14+14+1=(15.

The partition function increases quite rapidly with n. For example, p(10) =
42, p(20) = 627, p(50) = 204226, p(100) = 190569292, and p(200) =
3972999029388.

Many times we are interested in problems in which our concern does not
extend to all partitions of n but only to a particular subset of the partitions
of n.

DEFINITION 1.3, Let % denote the set of all partitions.
DEFINITION 1.4. Let p(S, n) denote the number of partitions of n that belong
to a subset S of the set & of all partitions.

For example, we might consider @ the set of all partitions with odd parts
and 2 the set of all partjtions with distinct parts. Below we tabulate partitions
related to @ and to 2.

po, =1 1=(@),

p(0,2)=1: 141=((1%,

p(0,3)=2: 3=03), 14+1+1=0Y,

pO,4H=2: 341=(3), 14+14+14+1=(1%,

p0,5 =3 5=(5), 34+1+1=(123),
1+14+14141=(5,

p0,6)=4: 5+ 1=(5), 3+3=(3Y,
3+ 1+141=(1%),
1+1+1414+1+1=(15,

po,N=5 T=[M, S5+14+1=(13%), 3+3+1=(3%,
I+ 1+1+14+1=(1*),
1+1+14+1414+141=(").

2, 1) =1 1=(©),

p2,2)=1: 2=(2),

p(2,3)=2: 3=(3), 2+1=(12),

pP2,4)=2: 4=(4), 3+1=(13),

p2,5)=3: 5=(5, 4+1=(14), 3+2=(23),

p(2,6)=4: 6=(6), 5+1=(5), 4+2=(4),
3+241=(123),

K2, =5 7=, 6+1=(16), 5+ 2 =29,
4+3=(34, 4+2+1=(129).
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We point out the rather curious fact that p(0, n) = p(D, n) for n < 7,
although there is little apparent relationship between the various partitions
listed (see Corollary 1.2).

In this chapter, we shall present two of the most elemental tools for treating
partitions: (1) infinite product generating functions; (2) graphical representa-
tion of partitions.

1.2 Infinite Product Generating Functions of One Variable

DEFINITION 1.5. The generating function f(q) for the sequence ay, a,,a,, a;,. . .
is the power series f(q) = Y0 3.4

Remark. For many of the problems we shall encounter, it suffices to
consider f(g) as a *“formal power series” in g. With such an approach many
of the manipulations of series and products in what follows may be justified
almost trivially. On the other hand, much asymptotic work (see Chapter 6)
requires that the generating functions be analytic functions of the complex
variable q. In actual fact, both approaches have their special merits (recently,
E. Bender (1974) has discussed the circumstances in which we may pass from
one to the other). Generally we shall state our theorems on generating
functions with explicit convergence conditions. For the most part we shall
be dealing with absolutely convergent infinite series and infinite products;
consequently, various rearrangements of series and interchanges of summation
will be justified analytically from this simple fact.

DEFINITION 1.6. Let H be a set of positive integers. We let ““H’’ denote the
set of all partitions whose parts lie in H. Consequently, p(*H”, n) is the
number of partitions of n that have all their parts in H.

Thus if Hy is the set of all odd positive integers, then “Hy,” = 0.
p(“HO", n) = P(O, n)'

DEFINITION 1.7. Let H be a set of positive integers. We let “H"(< d) denote
the set of all partitions in which no part appears more than d times and each
part is in H.

Thus if N is the set of all positive integers, then p(“N”(< 1), n) = (2, n).

THEOREM 1.1. Let H be a set of positive integers, and let

f(@ =Y p(“H”, n)q", (1.2.1)
az0
Jd@) =Y, p("H"(< d), m)q". (1.2.2)

az0
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Then for |q] < 1

f@=T1a-¢7"" (1.2.3)
neH
fda) = H;(l +q" 4+ + g™
= l—[(l — q(d+l)n)(1 _ qn)—l. (124)
neH

Remark. The equivalence of the two forms for f,(q) follows from the simple
formula for the sum of a finite geometric series:

1_ r+i
L4 x+x?4 dx= o
1 —x

Proof. We shall proceed in a formal manner to prove (1.2.3) and (1.2.4);
at the conclusion of our proof we shall sketch how to justify our steps analyt-
ically. Let us index the elements of H, so that H = {h,, h,, hs, hy,...}. Then

[[a-g'=TI0+q" + ™ +q" +)
neH neH

(1 +qh1+q2h1+q3hl +.)
X(l +q"1+q2"1+q3"1 +)

X(l +q".’!+q2".’!+q3":! +.)

= Z Z Z Cogumtehatashyt

and we observe that the exponent of g is just the partition (h;"*h,*2h,% - ).
Hence ¢" will occur in the foregoing summation once for each partition of n
into parts taken from H. Therefore

[ma=gnt =Y p(“H”, n)q".

neH nz0
The proof of (1.2.4) is identical with that of (1.2.3) except that the infinite
geometric series is replaced by the finite geometric series:

H(l +4q" + qz" RS qdn)
neH
= Z Z Z . .q"l"l+ﬂz'|1+a3'|3+...

424,20 424220 d2a320

=Y p(“H"(< d), n)q".

nz20
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If we are to view the foregoing procedures as operations with convergent
infinite products, then the multiplication of infinitely many series together
requires some justification. The simplest procedure is to truncate the infinite
product to []}., (1 — ¢")~"'. This truncated product will generate those
partitions whose parts are among h,, h,,. .., h,. The multiplication is now
perfectly valid since only a finite number of absolutely convergent series are
involved. Now assume q is real and 0 < ¢ < 1; thenif M = h,,

M n 0
Y pCH” g <TTU - ¢ <0 - ¢"7" < 0.
j=0 i=1

i=

Thus the sequence of partial sums Z’,‘Qo p(“H"”, j)q’ is a bounded increasing
sequence and must therefore converge. On the other hand

™M

pCH", D > TTA — ") =[]0 - ¢! as n— o
i=1 =1

Jj=0 i

Therefore

o0

pCH™ g’ =TI - g7  =TT0 - g7

i=i neH

]
ir1s

J

Similar justification can be given for the proof of (1.2.4). [ |
CoROLLARY 1.2 (Euler). p(0, n) = p(2, n) for all n.

Proof. By Theorem 1.1,
PR =-fj.(l — g
and
Y 2@, wa" =[]0 + 4.

nz0 n=i

Now
(1.2.5)

Hence

Y. KO, nq" =Y KD, n)q",

nz0 nz0
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and since a power series expansion of a function is unique, we see that p(®, n) =
p(2, n) for all n. |

COROLLARY 1.3 (Glaisher). Let N, denote the set of those positive integers
not divisible by d. Then

P(“Ngyy"sm) = p(“N”(< d), n)
for all n.

Proof. By Theorem 1.1,

. B (—l:q(d+l)L)
n;Op( N (< d)’ n)q B nl—=-[l (1 - ‘I")
°° 1
0o
d+i)tn

=2 P(“Nay ", )",
0

nz

and the result follows as before. [ |

There are numerous results of the type typified by Corollaries 1.2 and 1.3.
We shall run into such results again in Chapters 7 and 8, where much deeper
theorems of a similar nature will be discussed.

1.3 Graphical Representation of Partitions

Another effective elementary device for studying partitions is the graphical
representation. To each partition A is associated its graphical representation
%, (or Ferrers graph), which formally is the set of points with integral co-
ordinates (i, j) in the plane such that if 1 = (4, 4,,..., 4,), then (i,j)e %,
ifand only if02>i> —n+1,0 < j < A, —1. Rather than dwell on this
formal definition, we shall, by means of a few examples, fully explain the
graphical representation.

The graphical representation of the partition 8 + 6 + 6 + 5 + 1 is

The graphical representation of the partition 7+ 3 + 3+ 2+ 1+ 1 is
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Note that the ith row of the graphical representation of (1,, 4,,..., 4,)
contains 1, points (or dots, or nodes).
We remark that there are several equivalent ways of forming the graphical
representation. Some authors use unit squares instead of points, so that the
graphical representation of 8 + 6 + 6 + 5 + 1 becomes

Such a representation is extremely useful when we consider applications of
partitions to plane partitions or Young tableaux (see Chapter 11).

Other authors prefer the representation to be upside down (they would
say right side up); for example, in the case of 8 + 6 + 6 + 5 + 1

or ® ¢ 0 0 0 O

Since most of the classical texts on partitions use the first representation
shown in this section, we shall also.

DeriniTioN 1.8. If 4 = (4,,...,4,) is a partition, we may define a new
partition ' = (4,',..., 4,) by choosing 1, as the number of parts of 4 that
are 2 i. The partition A’ is called the conjugate of A.
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While the formal definition of c 1 oo revealing, we may better
understand the conjugate by using graphical representation. From the
definition, we see that the conjugate of the partition 8 + 6 + 6 + 5 + 1 is
544+4+4+4+ 3+ 1+ 1. The graphical representation of 8 + 6 +
6+5+1is

and the conjugate of this partition is obtained by counting the dots in successive
columns; that is, the graphical representation of the conjugate is obtained
by reflecting the graph in the main diagonal. Thus the graph of the conjugate
partition is

Notice that not only does the graphical representation provide a simple
method by which to obtain the conjugate of 1, but it also shows directly that
the conjugate partition A’ is a partition of the same integer as 1 is; that is,
XA; = XA;. Furthermore, it is clear that conjugation is an involution of the
partitions of any integer, in that the conjugate of the conjugate of 1 is again A.

Let us now prove some theorems on partitions, using graphical representa-
tion.

THEOREM 1.4. The number of partitions of n with at most m parts equals
the number of partitions of n in which no part exceeds m.

Proof. We may set up a one-to-one correspondence between the two classes
of partitions under consideration by merely mapping each partition onto
its conjugate. The mapping is certainly one-to-one, and by considering the
graphical representation we see that under conjugation the condition “at
most m parts” is transformed into “no part exceeds m” and vice versa. |l

As an example, let us consider the partitions of 6, first into at most three
parts and then into parts none of which exceeds 3. We shall list conjugates
opposite each other.



