THEOREM 1.6. Let $p_e(\mathcal{D}, n)$ (resp. $p_o(\mathcal{D}, n)$) denote the number of partitions of n into an even (resp. odd) number of distinct parts. Then

$$p_{e}(\mathcal{D}, n) - p_{o}(\mathcal{D}, n) = \begin{cases} (-1)^{m} & \text{if } n = \frac{1}{2}m(3m \pm 1), \\ 0 & \text{otherwise.} \end{cases}$$

Proof. We shall attempt to establish a one-to-one correspondence between the partitions enumerated by $p_e(\mathcal{D}, n)$ and those enumerated by $p_o(\mathcal{D}, n)$. For most integers n our attempt will be successful; however, whenever n is one of the pentagonal numbers $\frac{1}{2}m(3m \pm 1)$, a single exceptional case will arise.

To begin with, we note that each partition $\lambda = (\lambda_1, \dots, \lambda_r)$ of n has a smallest part $s(\lambda) = \lambda_r$; also, we observe that the largest part λ_1 of $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ is the first of a sequence of, say, $\sigma(\lambda)$ consecutive integers that are parts of λ (formally $\sigma(\lambda)$ is the largest j such that $\lambda_j = \lambda_1 - j + 1$). Graphically the parameters $s(\lambda)$ and $\sigma(\lambda)$ are easily described:

$$\lambda = (76432)$$

$$\lambda = (8765)$$

$$0 \quad 0 \quad 0 \quad 0$$

We transform partitions as follows.

Case 1. $s(\lambda) \le \sigma(\lambda)$. In this event, we add one to each of the $s(\lambda)$ largest parts of λ and we delete the smallest part. Thus

$$\lambda = (76432) \rightarrow \lambda' = (8743);$$

that is

Case 2. $s(\lambda) > \sigma(\lambda)$. In this event, we subtract one from each of the $\sigma(\lambda)$ largest parts of λ and insert a new smallest part of size $\sigma(\lambda)$. Thus

$$\lambda = (8743) \rightarrow (76432);$$

that is

The foregoing procedure in either case changes the parity of the number of parts of the partition, and noting that exactly one case is applicable to any partition λ , we see directly that the mapping establishes a one-to-one correspondence. However, there are certain partitions for which the mapping will not work. The example $\lambda = (8765)$ is a case in point. Case 2 should be applicable to it; however, the image partition is no longer one with distinct parts. Indeed, Case 2 breaks down in precisely those cases when the partition has r parts, $\sigma(\lambda) = r$ and $s(\lambda) = r + 1$, in which case the number being partitioned is

$$(r+1)+(r+2)+\cdots+2r=\frac{1}{2}r(3r+1).$$

On the other hand, Case 1 breaks down in precisely those cases when the partition has r parts, $\sigma(\lambda) = r$ and $s(\lambda) = r$, in which case the number being partitioned is

$$r + (r + 1) + \cdots + (2r - 1) = \frac{1}{2}r(3r - 1).$$

Consequently, if n is not a pentagonal number, $p_e(\mathcal{D}, n) = p_o(\mathcal{D}, n)$; if $n = \frac{1}{2}r(3r \pm 1)$, $p_e(\mathcal{D}, n) = p_o(\mathcal{D}, n) + (-1)^r$.

COROLLARY 1.7 (Euler's pentagonal number theorem).

$$\prod_{n=1}^{\infty} (1 - q^n) = 1 + \sum_{m=1}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)} (1 + q^m)$$

$$= \sum_{m=-\infty}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)}.$$
(1.3.1)

Proof. Clearly

$$\sum_{m=-\infty}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)} = 1 + \sum_{m=1}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)} + \sum_{m=-1}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)}$$
$$= 1 + \sum_{m=1}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)} + \sum_{m=-1}^{\infty} (-1)^m q^{\frac{1}{2}m(3m+1)}$$

$$= 1 + \sum_{m=1}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)} (1 + q^m)$$

$$= 1 + \sum_{n=1}^{\infty} (p_e(\mathcal{D}, n) - p_o(\mathcal{D}, n)) q^n,$$

by Theorem 1.6.

To complete the proof we must show that

$$1 + \sum_{n=1}^{\infty} (p_{\epsilon}(\mathcal{D}, n) - p_{o}(\mathcal{D}, n))q^{n} = \prod_{n=1}^{\infty} (1 - q^{n}).$$

Now

$$\prod_{n=1}^{\infty} (1-q^n) = \sum_{a_1=0}^{1} \sum_{a_2=0}^{1} \sum_{a_3=0}^{1} \cdots (-1)^{a_1+a_2+a_3+\cdots} q^{a_1+1+a_2+2+a_3+3\cdots},$$

as in the proof of (1.2.4) in Theorem 1.1. Note now that each partition with distinct parts is counted with a weight $(-1)^{a_1+a_2+a_3+\cdots}$, which is + 1 if the partition has an even number of parts and -1 if the partition has an odd number of parts. Consequently

$$\prod_{n=1}^{\infty} (1 - q^n) = \sum_{a_1=0}^{1} \sum_{a_2=0}^{1} \sum_{a_3=0}^{1} \cdots (-1)^{a_1 + a_2 + a_3 + \cdots} q^{a_1 \cdot 1 + a_2 \cdot 2 + a_3 \cdot 3 + \cdots}$$

$$= 1 + \sum_{n=1}^{\infty} (p_c(\mathcal{Q}, n) - p_o(\mathcal{Q}, n)) q^n,$$

and so we have the desired result.

COROLLARY 1.8 (Euler). If n > 0, then

$$p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-7)$$

$$+ \cdots + (-1)^m p(n - \frac{1}{2}m(3m-1))$$

$$+ (-1)^m p(n - \frac{1}{2}m(3m+1)) + \cdots = 0,$$
(1.3.2)

where we recall that p(M) = 0 for all negative M.

Proof. Let a_n denote the left-hand side of (1.3.2). Then clearly

$$\sum_{n=0}^{\infty} a_n q^n = \sum_{n=0}^{\infty} p(n) q^n \cdot \left[1 + \sum_{m=1}^{\infty} (-1)^m q^{\frac{1}{2}m(3m-1)} (1 + q^m) \right]$$
$$= \prod_{n=1}^{\infty} (1 - q^n)^{-1} \cdot \prod_{n=1}^{\infty} (1 - q^n)$$
$$= 1$$

where the penultimate equation follows immediately by (1.2.3) and Corollary 1.7. Hence, $a_n = 0$ for n > 0.

Corollary 1.8 provides an extremely efficient algorithm for computing p(n) that we shall discuss further in Chapter 14.

Examples

- 1. (Subbarao) The number of partitions of n in which each part appears two, three, or five times equals the number of partitions of n into parts congruent to 2, 3, 6, 9, or 10 modulo 12.
- 2. The number of partitions of n in which only odd parts may be repeated equals the number of partitions of n in which no part appears more than three times.
- 3. The number of partitions of n in which only parts $\not\equiv 0 \pmod{2^m}$ may be repeated equals the number of partitions of n in which no part appears more than $2^{m+1} 1$ times.
- 4. (Ramanujan) The number of partitions of n with unique smallest part and largest part at most twice the smallest part equals the number of partitions of n in which the largest part is odd and the smallest part is larger than half the largest part.
- 5. Let $P_1(r; n)$ denote the number of partitions of n into parts that are either even and not congruent to $4r 2 \pmod{4r}$ or odd and congruent to 2r 1 or $4r 1 \pmod{4r}$. Let $P_2(r; n)$ denote the number of partitions of n in which only even parts may be repeated and all odd parts are congruent to $2r 1 \pmod{2r}$. Then $P_1(r; n) = P_2(r; n)$.

Comment on Examples 6-7. P. A. MacMahon introduced what he termed "modular" partitions. Given the positive integers k and n, there exist (by the Euclidean algorithm) $h \ge 0$ and $0 < j \le k$ such that

$$n=kh+j.$$

The "modular" partitions are a modification of the Ferrers graph so that n is represented by a row of h k's and one j. Thus the representation of 8 + 8 + 7 + 7 + 6 + 5 + 2 to the modulus 2 is

Note that the ordinary Ferrers graph is just the modular representation with modulus 1.

2

6. Let $W_1(r, m, n)$ denote the number of partitions of n into m parts, each large ban 1, with exactly r odd parts, each distinct. Let $W_2(r, m, n)$ denote the number of partitions of n with 2m as largest part and exactly r

Proof. Combinatorial reasoning of the type used in the previous three proofs shows that Fine's theorem is equivalent to the following assertion:

$$\sum_{j=0}^{\infty} \frac{t^{j+1}q^{2j+1}}{(tq;q^2)_{j+1}} = tq \sum_{j=0}^{\infty} (-q)_j q^j t^j.$$

Now

$$tq \sum_{j=0}^{\infty} (-q)_{j}q^{j}t^{j}$$

$$= tq \sum_{j=0}^{\infty} \frac{(q^{2}; q^{2})_{j}q^{j}t^{j}}{(q)_{j}}$$

$$= tq(q^{2}; q^{2})_{\infty} \sum_{j=0}^{\infty} \frac{t^{j}q^{j}}{(q)_{j}} \frac{1}{(q^{2j+2}; q^{2})_{\infty}}$$

$$= tq(q^{2}; q^{2})_{\infty} \sum_{j=0}^{\infty} \frac{t^{j}q^{j}}{(q)_{j}} \sum_{m=0}^{\infty} \frac{q^{2jm+2m}}{(q^{2}; q^{2})_{m}} \qquad \text{(by (2.2.5))}$$

$$= tq(q^{2}; q^{2})_{\infty} \sum_{m=0}^{\infty} \frac{q^{2m}}{(q^{2}; q^{2})_{m}} \sum_{j=0}^{\infty} \frac{t^{j}q^{j(2m+1)}}{(q)_{j}}$$

$$= tq(q^{2}; q^{2})_{\infty} \sum_{m=0}^{\infty} \frac{q^{2m}}{(q^{2}; q^{2})_{m}(tq^{2m+1})_{\infty}} \qquad \text{(by (2.2.5))}$$

$$= \frac{tq(q^{2}; q^{2})_{\infty}}{(tq)_{\infty}} \sum_{m=0}^{\infty} \frac{(tq; q^{2})_{m}(tq^{2}; q^{2})_{m}q^{2m}}{(q^{2}; q^{2})_{m}}$$

$$= \frac{tq(q^{2}; q^{2})_{\infty}}{(tq)_{\infty}} \frac{(tq^{2}; q^{2})_{\infty}(tq^{3}; q^{2})_{\infty}}{(q^{2}; q^{2})_{\infty}} \sum_{m=0}^{\infty} \frac{(q^{2}; q^{2})_{m}t^{m}q^{2m}}{(q^{2}; q^{2})_{m}(tq^{3}; q^{2})_{m}}$$

$$= \sum_{j=0}^{\infty} \frac{t^{m+1}q^{2m+1}}{(tq; q^{2})_{m}}.$$
(by Corollary 2.3)

We conclude this chapter with a look at a property of partitions called the Durfee square, and we utilize it to provide a new proof of (2.2.9).

Combinatorial Proof of Eq. (2.2.9). To each partition $\lambda = (\lambda_1, \lambda_2, ..., \lambda_r)$ we may assign a parameter $d(\lambda)$ as the number of λ_j such that $\lambda_j \ge j$. Let us see what $d(\lambda)$ measures in the graphical representation of λ . Suppose $\lambda = (124^257^2)$, then $d(\lambda) = 4$, the graphical representation is

and as we have indicated, $d(\lambda)$ measures the largest square of nodes contained in the partition λ . This square is called the *Durfee square* (after W. P. Durfee), and $d(\lambda)$ is called the *side of the Durfee square*. It is clear from the graphical representation that if $\lambda \vdash n$ and $d(\lambda) = s$, then the partition λ may be uniquely written as $(s^s) + \lambda' + \lambda''$ where (s^s) counts the nodes in the Durfee square, λ' represents the nodes below the Durfee square (and is therefore some partition all of whose parts are $\leq s$), and λ'' represents the conjugate of the nodes to the right of the Durfee square and so λ'' is also some partition whose parts are $\leq s$. In the foregoing example the partition $\lambda = (124^257^2)$ is uniquely written as $(4^4) + (124) + (2^23)$. Since partitions with parts $\leq s$ are generated by

$$\frac{1}{(1-q)(1-q^2)\cdots(1-q^s)} = \frac{1}{(q)_s}$$

(Theorem 1.1), we see that the set of all partitions with Durfee square of side s is generated by

$$q^{s^2} \frac{1}{(q)_s} \cdot \frac{1}{(q)_s} = \frac{q^{s^2}}{(q)_s^2}$$

Therefore

$$\frac{1}{(q)_{\infty}} = \sum_{n=0}^{\infty} p(n)q^n = \sum_{s=0}^{\infty} \frac{q^{s^2}}{(q)_s^2}.$$

Examples

1. The following generalization of Corollary 2.3 is valid for each integer $k \ge 1$,

$$\sum_{n=0}^{\infty} \frac{(a; q^k)_n(b)_{kn}t^n}{(q^k; q^k)_n(c)_{kn}} = \frac{(b)_{\infty}(at; q^k)_{\infty}}{(c)_{\infty}(t; q^k)_{\infty}} \sum_{n=0}^{\infty} \frac{(c/b)_{\infty}(t; q^k)_n b^n}{(at; q^k)_n}.$$