10 The Elementary Theory of Partitions Chap. 1.3

THEOREM 1.6. Let p (2, n) (resp. p(Z, n)) denote the number of partitions
of n into an even (resp. odd) number of distinct parts. Then

(=D™ if n=imGm<t1),
PLZ, n) = PP, n) = {0 otherwise.

Proof. We shall attempt to establish a one-to-one correspondence between
the partitions enumerated by p(2, n) and those enumerated by p (2, n).
For most integers n our attempt will be successful; however, whenever n is
one of the pentagonal numbers }m(3m £ 1), a single exceptional case will
arise.

To begin with, we note that each partition 4 = (4,,...,4,) of n has a
smallest part s(A) = A,; also, we observe that the largest part 1, of 1 =
(A1, Ag. .., 4,) is the first of a sequence of, say, a(1) consecutive integers that
are parts of A (formally o(1) is the largest j such that 4; = A, — j + 1).
Graphically the parameters s(A) and a(4) are easily described:

A=(76432) A=(8765)
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We transform partitions as follows.

Case 1. s(1) < o(A). In this event, we add one to each of the s(1) largest
parts of A and we delete the smallest part. Thus

A = (76432) - X' = (8743);
that is
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Case 2. s(A) > a(2). In this event, we subtract one from each of the a(1)
largest parts of 1 and insert a new smallest part of size a(4). Thus

1 = (8743) - (76432);

that is

X

>
™

The foregoing procedure in either case changes the parity of the number of
parts of the partition, and noting that exactly one case is applicable to any
partition 4, we see directly that the mapping establishes a one-to-one cor-
respondence. However, there are certain partitions for which the mapping
will not work. The example A = (8765) is a case in point. Case 2 should be
applicable to it; however, the image partition is no longer one with distinct
parts. Indeed, Case 2 breaks down in precisely those cases when the partition
has r parts, o(1) = r and s(1) = r + 1, in which case the number being
partitioned is

r+ D+ +2++2r=40Gr+ 1)

On the other hand, Case 1 breaks down in precisely those cases when the
partition has r parts, a(1) = r and s(1) = r, in which case the number being
partitioned is

r+(r+ D+ Q2r=1D)=0Gr-1.

Consequently, if n is not a pentagonal number, p. (2, n) = p(2, n); if
n=4r(3r £ 1), p(2, n) = p(D, n) + (- 1) [ |

CoroLLARY 1.7 (Euler’s pentagonal number theorem).

[10 - ) =1+ 3 (= 0g#em=0(1 + %)
m=1

n=1

= i (_ l)mq«}m(Sm—l). (1'31)

m=—-w

Proof. Clearly

Z (_ l)mq«}mﬂm—l) =14 Z (_ l)n'lq«}mﬂm-l) + Z (_ l)mq«}mﬂm—l)

m=-o m=1 m=—1

=1 + Z (_ l)mq«}m(Sm—l‘) + Z (_ l)mq«}m(Snﬁ-l)

m=1 m=1
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2]

L+ Y (= 1gCm 01+ q7)

m=

il

I+ Y (pdZ, n) = p(2, n))q",
n=1
by Theorem 1.6.

To complete the proof we must show that

2] 2]

1+ Y (P2, 1) — p(Z, m)g" = [T (1 = ¢").

o0 1 1 1
n(l o qn) — Z Z Z - (_ l)n|+n1+n3+---qn,-l+n1-2+n3-3...,
0 a;=0 a

as in the proof of (1.2.4) in Theorem 1.1. Note now that each partition with
distinct parts is counted with a weight (— 1)*'*22*9:* " which is + 1 if the
partition has an even number of parts and — 1 if the partition has an odd
number of parts. Consequently

e (__ l)n|+n1+n3+--- a;*1+ay-24+a3-3+---

q
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-
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1=0
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it

n 3

1+ % (pL2, n) = p(2, n))q",

n=1
and so we have the desired result. [ |
COROLLARY 1.8 (Euler). If n > 0, then
p(n) — pln = 1) = p(n —2) + p(n — 5) + p(n = 7)
+- 4+ (= D)"p(n = imGm - 1))
+ (= 1)"'p(n — im(Bm + 1)) +---= 0, (1.3.2)
where we recall that p(M) = 0 for all negative M.
Proof. Let a, denote the left-hand side of (1.3.2). Then clearly

8

Za"qn — p(n)qn l + Z (_ l)mqgm(Sm—-l)(l + qm)
n=0 1] =

m=1

"

]
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where the penultimate equation follows immediately by (1.2.3) and Corollary
1.7. Hence, a, = 0 for n > 0. [

Corollary 1.8 provides an extremely efficient algorithm for computing
p(n) that we shall discuss further in Chapter 14,

Examples

1. (Subbarao) The number of partitions of n in which each part appears
two, three, or five times equals the number of partitions of n into parts
congruent to 2, 3, 6, 9, or 10 modulo 12.

2. The number of partitions of n in which only odd parts may be repeated
equals the number of partitions of n in which no part appears more than
three times.

3. The number of partitions of n in which only parts £ 0 (mod 2™) may
be repeated equals the number of partitions of »n in which no part appears
more than 2! — 1 times.

4. (Ramanujan) The number of partitions of n with unique smallest part
and largest part at most twice the smallest part equals the number of parti-
tions of n in which the largest part is odd and the smallest part is larger than
half the largest part.

5. Let P,(r; n) denote the number of partitions of n into parts that are
either even and not congruent to 4r — 2 (mod 4r) or odd and congruent to
2r — 1 or 4r — 1 (mod 4r). Let P,(r; n) denote the number of partitions of n
in which only even parts may be repeated and all odd parts are congruent
to 2r — 1 modulo 2r. Then P,(r; n) = P,(r; n).

Comment on Examples 6-7. P. A. MacMahon introduced what he termed
“modular” partitions. Given the positive integers k and n, there exist (by
the Euclidean algorithm) & > 0 and 0 < j < k such that

n=kh+j.

The “modular” partitions are a modification of the Ferrers graph so that
n is represented by a row of h k’s and one j. Thus the representation of
8+8+7+4+7+6+5+ 2tothe modulus 2 is

2222
2222
2221
2221
222
221
2

Note that the ordinary Ferrers graph is just the modular representation
with modulus 1.

6. Let W, (r, m, n) denote the number of partitions of n into m parts,
each large * “an 1, with exactly r odd parts, each distinct. Let Wy(r, m, n)
denote the ..umber of partitions of n with 2m as largest part and exactly r
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Proof. Combinatorial reasoning of the type used in the previous three
proofs shows that Fine’s theorem is equivalent to the following assertion:

© 'j+lq2]+l

e =1tq ). (— q);q't.
i=0(tq; q%)j4, 1=o( !

Now

tqy (— @)’V
j=0

j=

o0 'lql 1
=19(¢*;4De0 ¥ ————
j<o(@); (@47,

2jm+2m

© 'J' J o
= (g% 4D Y — 5 2 (by (2.2.5))

1=0 (@) m=0(a%; 4D
© q2m © 'jqj(2m+l)

'q(qz, qZ)m mgo (qzx qz)m J=0 (q)‘,

© 2Zm

ta(a*; ¢ 3 (q7;17)q7;1;;r,)~ (by (2.2.5)

_ 1% qY)e 2 (t4;97)m(ta”; 47)ma®"
('q)uo m=0 (qz; qz)m

2Zm

_ 19(4%; 9% (14?47 (19754 2 (475 4)mt™e
('q)uo (qZ, qz)ao m=0 (qz) qz)m('qa; qz)m

(by Corollary 2.3)

© 'm+l 2m+1

q
= —_— [
m=0 ("1, qz)m+l

We conclude this chapter with a look at a property of partitions called the
Durfee square, and we utilize it to provide a new proof of (2.2.9).

Combinatorial Proof of Eq. (2.2.9). To each partition 1 = (4,, 1,,..., 4)
we may assign a parameter d(4) as the number of 4; such that A; > j. Let us
see what d(1) measures in the graphical representatibn of A. Suppose 4 =
(1242572), then d(4) = 4, the graphical representation is
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[ ]

and as we have indicated, d(1) measures the largest square of nodes contained
in the partition A. This square is called the Durfee square (after W. P. Durfee),
and d(A) is called the side of the Durfee square. 1t is clear from the graphical
representation that if A - n and d(1) = s, then the partition A may be uniquely
written as (s°) + A’ + A" where (s°) counts the nodes in the Durfee square,
A" represents the nodes below the Durfee square (and is therefore some
partition all of whose parts are < s), and A"’ represents the conjugate of
the nodes to the right of the Durfee square and so A" is also some partition
whose parts are < s. In the foregoing example the partition 1 = (124257%)
is uniquely written as (4*) 4+ (124) + (223). Since partitions with parts < s
are generated by

| 1
T-q9=¢)--(0-9) (a,

(Theorem 1.1), we see that the set of all partitions with Durfee square of
side s is generated by

a1l 1 _ g
@s @, (@3

Therefore

Examples

1. The following generalization of Corollary 2.3 is valid for each integer
k=1,

5 (@ Ot _ (0)lat; 40 & (c/PV(15 @000
n=0 (qk;qk)n(c)kn (C)m(', qk)ao n=0 (‘L..\a'; qk)n .



