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Other parameters besides the number of parts #{4) of a partition 4 will
interest us from time to time; so we shall have occasion to consider other
types of partition generating functions of several variables.

The preceding comments suggest the interest of considering infinite serie$
and products in two (or more) variables. In the following section, we shall
develop an elementary technique for proving many series and product
identities. We shall obtain several classical theorems of great importance,
such as Jacobi’s triple product identity. As will become clear in Section 2.3,
the results of Section 2.2 are quite useful in treating partition identities. It is
possible, however, to skip Section 2.2 and read Section 2.3, referring back
only for the statements of theorems. For the reader who needs series trans-
formations to attack a partition problem, the first six examples at the end
of this chapter form a good test of the techniques used in Section 2.2.

2.2 Elementary Series-Product Identities

We begin with a theorem due to Cauchy; as we shall see, this result provides
the tool for doing everything else in this section.

THEOREM 2.1. If |q] < 1, |t| < 1, then
- (1 —a)l —agq)--(1~-aq" ')t" (1 - atq”)
AR () (L e H =y @

Remark. We shall try always to state our theorems with as little notational
disguise as possible. However, for the proofs, it seems only sensible to use
the following standard abbreviations

(a), = (a; @), =(1 — aX1 — aq)-*+(1 - ag"™"),

(@) = (a; 9), = lim(a; q),

(a)o = 1.

We may define (a), for all real numbers n by

(@), = (0)o/(aq") .

The series in (2.2.1) is an example of a basic hypergeometric series. The
study of basic series (or g-series, or Eulerian series) is an extensive branch of
analysis and we shall only touch upon it in this book. Most of the theorems
of this section may be viewed as elementary results in the theory of basic
hypergeometric series. Theorem 2.1 has become known as the ‘“‘g-analog of
the binon.  series,” for if we write a = ¢* where a is a nonnegative integer,
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then (2.2.1) formally tends to

1+ Z(a+n—l)"=(1—:)'°, as g1

Proof. Let us consider

F(1) = l"[ (o) S A 222)
n=0 "1 ) n=0
where A, = A,(a, q). We note that the A4, exist since the infinite product is
uniformly convergent for fixed a and g inside [t| < | — ¢, and therefore it
defines a function of ¢ analytic inside || < 1.
Now

- atq")
(1= OF@t)=(1- at) H T

(1 (1 —atqg"") _
-1 n+l)

= (1 — at) n = (1 — at)F(tq). (2.2.3)

Clearly A, = F(0) = 1, and by comparing coefficients of " in the extremes
of (2.2.3) we see that

An - An—l = q"An - aq"-lAn—l’
or

(1 —aqg™
A= (1-q9

Iterating (2.2.4) we see that

A,y (2.2.9)

_(l—ag"""Y1-aq""? (1 - a)4,
(1-gY1~-q"H(1-9q)

_ (@),
(@D

Substituting this value for A, into (2.2.2), we obtain the theorem. [

Euler found the two following special cases of Theorem 2.1. Each of these
identities is directly related to partitions in Example 17 at the end of this
chapter.
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COROLLARY 2.2 (Euler). For |t] < 1, |q] < |,

@© U © N
I+ ,.g. —l - (=q) "1;10(1 -7, (229
1+ i t’lqin(n-l) ﬁ 1+ 109, 226

0= -g) (=g a0

Proof. Equation (2.2.5) follows immediately by setting a = 0 in (2.2.1).
To obtain (2.2.6) we replace a by a/b and ¢ by bz in (2.2.1); hence for |bz| < 1

- i’: (b—a)b—-aq)  (b—-aq" ")z _ = (1 - azq")
=t (I—gX1—=g%-(1-4q" a0 (1 = bzq")

Nowset b =0,a = — 1in (2.2.7) and we derive (2.2.6) directly. [ ]

2.2.7)

The following result is Heine’s fundamental transformation, and it is
instrumental in proving each of the succeeding four corollaries.

CoOROLLARY 2.3 (Heine). For |q| < 1, |t| < 1, |b| < 1

i+ i (1= a)1 —aq) (1 —ag"™ "Y1 = b)(1 — bg)-- (1 — bg"~")t"

st (=1 =g (1= g1 = )1 —cq) (1 —cq"™")

o (1= bg™(1 - atg™)

m=o (1 = cq™)(1 - tq")

2 (1= ¢/b)(1 — cq/b) (1 —cq""!/b) x
1
x{ +n§. (1-g1—g») (1 -q"""x

x (1= 1)1 = tg):--(1 = tq"~ ")b" }

x (1 — a1 — atg)---(1 — atqg"™ ")
Proof.

v @,0)t" _ (D)o 3 (@t"  (cq")o

n=0 (q)n(c)n (C)ao n=0 (q)n (bq")ao

_ By v 3 @t (c/b)ab"g™
(C)ao n=0 m=0 (q)n (q)m

_ D)y 3 (c/b),b"(atg")o
(C)uo m=0 - (q)m ('qm)ao

_ (O)fa)y 5 (e/b)n(mb™
(C)uo(')ao m=0 (q),,,(at),,,
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COROLLARY 2.4 (Heine). If |c| < |abl, |q] < I,
(I = a)Xl —aq)---(1 — aq"” l)(l — bX1 — bg)---(1 - b_qr_{)(c/ab)"
= (1= )1 = g2 (1= @)W1 — )1 — cq)= (1 — cq"™ ")

(I — cq"/a)1 — cq"[b)
m=0 (I —cqg™ (1 — u]"’/ab)

Proof. By Corollary 2.3,

1+Z

i (@)(b)(cfab)” _ (b}, (c/b)s < (c/ab),b”
n=0 (q)u(()n (C) ((/(lb)m" (1] (q)
= (0),(e[b)y (cla), _ (cla)ule/b)y -
() (clab)gy (b), (O)lc/ab)y
COROLLARY 2.5 (Bailey). If |q| < min(l, |bl), then
1+ {Z (I —a)l —aq) (1 —aq"” DA =) = bg)-- (1 - - bg"" ')~ q/b)"
w1 (0= g1 =g (1 — g™ — aq/b)(1 = ag?[b)- - (1 — aq"[b)

ﬁ (l — anm+l)(l + qm+l)(l __anm+2/b2)
" m=o0 (1 = ag™ " '/b)(1 + ¢™*'[b)
Proof. By Corollary 2.3 (interchanging a and b)
i O)(a)(— q/b)" _ (@) (— D 5 (q/b)n(— q/b),,.n
=0 (@ulaq/b)y  (aq/b)(— q/b)y n=o (@
(a).(— q). (qz/b qz),,,a"‘

T @/ (= /b o (4% 47)m

_ (@.(— q).(aq?/b* g%,
 (aq/b)o(~ q/b). (a5 9%,
_ (ag5¢3).(= ) (aq?[b? 3 q
(aq/b)..(= a/b),,
We remark that Corollary 2.4 is commonly referred to as the “g-analog

of Gauss’s theorem,” while Corollary 2.5 is the “g-analog of Kummer's
theorem.”

COROLLARY 2.6. If |q| < 1,

® q"l z
> S pae
st (1= @)1 = g% -(1 = ¢")d = 2)(1 = zq)---(1 — zg"™ ")

= I1 =z, (2.2.8)
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Therefore if

(a—c)xb € 0

ren=5 5 3

HMg

then we need only show f(x, y) = f(y, x) to obtain the desired result:

Cx= YV
Jx,y)—1+x ";o o)

v (0).(9).(y9)

n=0 (q)n(xq)n

Do 3 D"

C .
DoV Dw =0 (@n (by Corollary 2.3)

(9) ¢ (VDX)nq"

BRET M) M= Y (N
@Do o4 ¢ (@)X

CDr0De  @w =0 (@.(0a)n
(by Corollary 2.3)

n+l

=(1=x Z ()"I)nﬂ

Therefore
0 n+1

> - X3

(y‘;)n n= o(}"I) n=0 (;‘;)—;l

¢ x"(1 - yq")
L+ Z (yq).. Z. (v9)n

S, p) =10 -x) Z

+Z (-SA_f(y)-)‘) .
As a third example we consider a second refinement of Euler’s theorem
(Corollary 1.2) due to N. J. Fine.

THEOREM 2.13. The number of partitions of n into distinct parts with
largest part k equals the number of partitions of n into odd parts such that
2k + 1 equals the largest part plus twice the number of parts.
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Proof. Combinatorial reasoning of the type used in the previous three
proofs shows that Fine’s theorem is equivalent to the following assertion:

© 'j+lq2]+l

e =1tq ). (— q);q't.
i=0(tq; q%)j4, 1=o( !

Now

tqy (— @)’V
j=0

j=

o0 'lql 1
=19(¢*;4De0 ¥ ————
j<o(@); (@47,

2jm+2m

© 'J' J o
= (g% 4D Y — 5 2 (by (2.2.5))

1=0 (@) m=0(a%; 4D
© q2m © 'jqj(2m+l)

'q(qz, qZ)m mgo (qzx qz)m J=0 (q)‘,

© 2Zm

ta(a*; ¢ 3 (q7;17)q7;1;;r,)~ (by (2.2.5)

_ 1% qY)e 2 (t4;97)m(ta”; 47)ma®"
('q)uo m=0 (qz; qz)m

2Zm

_ 19(4%; 9% (14?47 (19754 2 (475 4)mt™e
('q)uo (qZ, qz)ao m=0 (qz) qz)m('qa; qz)m

(by Corollary 2.3)

© 'm+l 2m+1

q
= —_— [
m=0 ("1, qz)m+l

We conclude this chapter with a look at a property of partitions called the
Durfee square, and we utilize it to provide a new proof of (2.2.9).

Combinatorial Proof of Eq. (2.2.9). To each partition 1 = (4,, 1,,..., 4)
we may assign a parameter d(4) as the number of 4; such that A; > j. Let us
see what d(1) measures in the graphical representatibn of A. Suppose 4 =
(1242572), then d(4) = 4, the graphical representation is



