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< qn’ = m—1
+ = 1—-qgm " (2.2.9)
ngl (1=l - ¢ (1-g) a !

Remark. Equation (2.2.8) is due to Cauchy, and Eq. (2.2.9) is due to Euler.

Proof. First we note that (2,2.9) is obtained from (2.2.8) by setting z = gq.
In Corollary 2.4, seta = a™', b = B~' ¢ = z. Hence

1+ i @a—Da=-q) (@-qg""HB-DB-q) B-qg" """

n=1 (q)n(z)n
_ @0.B)s
(2)eo(z2B)
and if we set « = B = 0 in this identity, we obtain (2.2.8). [ ]

CoroLLARY 2.7, If |q| < 1,

© (1 —a)l = aq)---(1 — ag""")g"*V/2 2
L+ ngl 1-g9-4g%)-(0-4q" h ...n

Proof. Set b = 7' in Corollary 2.5. Hence

(1 —ag®™ "Y1 +4™.

§ @B-DE-) G- N=a) _ (14:4)e(~ Dul@d’F*1 4%
n=0 (q)n(aqﬂ)n (aqﬂ)m(_ qﬂ)uo

Now set B = 0 in this identity and we obtain the desired result. [ |

The next result, Jacobi’s triple product identity, may be viewed as a corollary
of Corollary 2.2; however, it is so important that we label it a theorem.

THEOREM 2.8. For z # 0, |q| < I,
Z znqn2 = n(l _ q2n+2)(1 + zq2n+l)(l + z—lq2n+l). (2210)
n=—o n=0
Proof. For |z| > |ql, |q| < 1,

3 2n+ 1y __ < zmqm2
"1;10(1 +2q )_m';o @y, (Y @26

1 b m_m2 m
= ngoz " @" 59D

1 bl m_ m? m
= E P mzz_mz [ C R W

(since (>  q?),, vanishes for m negative)
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= _T!_i*, o ,(:Ail)*_zz._q, i q(M+r)’ZM+'

(‘I 9q)aor=0 (q ;q)r m=- o

1 2(~4/2) & mim
= - q z
(4% 4)o rz:o (q%; q’),...;-uo

— | e m2_m
(439~ /259D ...=Z-uo 7

This is the desired result. Note that absolute convergence pertains everywhere
only so long as |z| > |q|, |g| < 1. However, the full result of the theorem
follows either by invoking analytic continuation, or by observing that the
entire argument may be carried out again with z™! replacing z. [ ]

COROLLARY 2.9, For |q| < 1,

_i (= 1)'q(x+ Dt /2=
- i(_ 1)rgl2k+ Dt D/2=in(y _ g2n+ Dy
n=0
- ﬁ(l _ q(2k+l)(n+l))(1 _ q(2k+l)n+i)(1 — g DD @Q.2.11)
n=0
Proof. Replace q by ¢*** and then set z = — g***~% in (2.2.10). This

substitution immediately yields the equality of the extremes in (2.2.11). Now

i(_ l)nq(2k+l)n(n+l)/2-in(l — q(2n+l)i)
n=0

(_ l)nq(2k+l)n(n+l)/2~in + f:(_ l)nq(2k+l)n(n-l)/’l+in
[ n=1

NgE

(_ l)nq(2k+l)n(n+l)/2~in + -z?j(_ l)nq(2k+l)n(n+l)/2-—in
1] n=-1

%k

2]

— Z (_ l)nq(2k+l)n(n+l)/2-in. .

n=-ow

We remark that Corollary 2.9 reduces to Corollary 1.7 when k = i = 1
once we observe that
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ﬁ(l — q3n+3)(1 — q3n+l)(1 o q3n+2) — ﬁ(l o qn).
n=0 n=1

COROLLARY 2,10 (Gauss)

a0 © 1 i m
"go g2 = 1 (—l(tq—zqm-')?; (2.2.13)
Proof. By (2.2.10) with z = — 1,

S (= 174" = @% 09)u(@; )@ 4D

A== o0

= (@De@; 1o = @w/(— Do

where the final equation follows from (1.2.5). Next

8

n(n+1)/2 _ < n(n+1)/2
24 b Y q

=0 n=-ow

= H D= Dol = Doy
= @~ Do~ Do = (3% 1)~ Do = @7 )0/ (45 1o
where again the final equation follows from (1.2.5). [ |

So far this section seems filled with much mathematics and little commentary.
It has been the hope that the power of Theorem 2.1 and simple series manipula-
tion would be fully appreciated if numerous significant results followed in
rapid-fire order. The reader will have a chance to practice the techniques
involved in the many examples at the end of this chapter.

2.3 Applications to Partitions

We shall prove four theorems on partitions utilizing either the actual
results or the methods of Section 2.2. We conclude with an examination of
“Durfee squares,” which allows us to obtain (2.2.9) from purely combinatorial
considerations. We begin with an interpretation of Corollary 2.9,

THEOREM 2.11. Let 2(k, i) denote all those partitions with distinct parts
in which each part is congruent to 0, + i (modulo 2k + 1). Let p(2(k, i), n)
(resp. p(%(k, i), n)) denote the number of partitions of n taken from 9(k, i)
with an even (resp. odd) number of parts. Then



NOTES ON THE JACOBI TRIPLE PRODUCT IDENTITY

PROFESSOR D.M.JACKSON

1. THE JAcoBI TRIPLE PRODUCT IDENTITY

These are notes on the Jacobi Triple Product Identity and its use in proving
the Fuler Pentagonal Number Theorem and the mod 5 and 7 congruences for the
partition number. 1 have included in a few more of the details than I included in
the lectures.

Let P be the set of all partitions and let D,, be the set of all partitions of n into
distinct parts only. Let T} denote the partition (k,k —1,...,1).

Lemma 1.1. [Sylvester’s Decomposition]

P x {Ty} = | Drss x (D; UD; 1)
=0

where Dy U D_1 = Dy.

Proof. Append the reverse (1,2,...,k) of Ty to the top of the Ferrers diagram for
m € P, and consider the staircase that continues the profile of the Ferrers diagram
for 7. The length of the staircase is k£ + j. The staircase partitions the diagram into
a partition « obtained by summing the columns of x’s below the staircase, and a
partition 8 obtained by summing the *’s in rows above the staircase. The number
of rows in 3 is j or j — 1. The partitions o and 3 necessarily have distinct parts,
induced by the staircase. The construction is clearly reversible. (I

Theorem 1.2. [Jacobi Triple Product Identity/

H (1 _ qQTn) (1 +yq2m—1) (1 +y—1q2m—1) — Z yqu?.

m>1 k=—o0
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Proof. From Lemma 1.1, by counting partitions with respect to the sum of their
parts, marked by ¢, we have

q(kgl) H 1—q¢™™ ' = Z [sFH7] H (1+ sq*)

m>1 j20 a>1
- ([tj] bf>[1 (1+1¢") + 7] bf>[1 (1 +fqb))
- Z;) [s’fﬂ_’tﬂ'] (1+1) ];[1 (1+ S;’”) (1+1t¢™)

_ jz;o [s*+717] [[1 (1 i_sqm) (141"

We now change variables from s and ¢ to s and u through st = u. Then

T a=am ™ = A W T o™ (+us™am )
m>1 3>0 m>1

(1) T =g =[] TT 0 +sa™ (145717

m>1 m>1

We next sum over k from —oo to +o0o by making use of the following symmetry in
k. Replacing s by s~!, we have
b+l - — -1 m m—
(T a—a ™ = [T (e s7'em) (L sam ).

m>1 m>1

Now replace s by ¢S, noting that [s7*] = ¢* [S™*] . Then
T a—am =" [s J] 1 +57"¢" ) (1 +Sq™)

m>1 m>1

so, replacing S by s,
U TLa=am ™ = [ [T (a4 sa™) (14578

m>1 m>1

since (kgl) —k = (4;“). Thus (1) holds with & replaced by —k. Thus summing

(1) over k from —oo to +o0o we have

o0 oo

Z Skq(’ﬁl) H (1 _qm)—l _ Z Sk [Sk} H (1—|—Sqm) (1+871qm71)
k=—o0 m>1 k=—o0 m>1
= H (1 +qurL> (1 +S—1q77L—1)
m>1
SO
Z Skq(’“;l) — H (1 _ qm) (1 + sqm) (1 + S—lqm—l) .
k=—o00 m>1

Replacing ¢ by ¢2,

(oo}
Z squ(k+1) _ H (1 _ q2m) (1 + Squ) (1 + s—1q2m—2) .

k=—o00 m>1



JACOBI TRIPLE PRODUCT IDENTITY 3

Let sq = y. Then

Z yquz _ H (1 _ q2m) (1 +yq2m—1) (1 +y—1q2m—l> ,

k=—o0 m>1

which completes the proof. O

Note that Y22 Ykt € Q [y,y7'] [[g]], the ring of formal power series in ¢

with a coefficient ring that is polynomial in y and y~'.

Example 1.1. Find the number of integer points on the d-sphere of radius r.
The d-sphere of radius r is given by
{(21,...,2q) €zt 2+ 422 =r?}.

Then the number ¢, 4 of such points is

o d
Cr.d = }{(21,...,2d) GZd: Z%++23:T2}| = [:ETZ:| ( Z xi2>

so, by the Jacobi Triple Product Theorem, with y = 1, we have
Crd = [zr2] H (1- me)d (1+ x2m71)2d.
m>1

This has reduced the original question from a multivariate one to a univariate one.

The following result is an immediate consequence of the Jacobi Triple Product
Identity.

Theorem 1.3. [Euler Pentagonal Number Theorem]

o0

[Ta-am= 3 (-)fgene

m>1 k=—o00

Proof. From the Jacobi Triple Product Identity,

H (1 _ q2m) (1 _’_yq2mfl) (1 _’_y71q2m71) _ Z yqu2'

m>1 k=—o00

First, replacing ¢ by ¢/ gives

H (1 _ q3m) (1 +yq3m—3/2) (1 +y—1q3m—3/2) _ i ykq3k2/2-

m>1 k=—o00

and then replacing y by —g~1/? gives
H (1 . qu) (1 o q3m72) (1 Jrqunfl) _ Z (71)qu(3k71)/2_
m>1 k=—o0

The result follows immediately since the exponents one the right hand side give a
complete set of residues modulo 3. g
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The Euler Pentagonal Number Theorem has a combinatorial interpretation in
terms of partitions.

Corollary 1.4. The number of partitions in D,, with an even number of parts minus
the number of partitions in D,, with an odd number of parts is equal to (fl)k if
there is an integer k such that n =k (3k — 1) /2 and is 0 otherwise.

Proof. Let di, (n) be the number of partitions in D,, with k parts. Then
> di(n)afq =[] (1 +aq™).
k,n>0 m>1

Let e (n) be the number of partitions in D,, with an even number of parts minus
the number of partitions in D,, with an odd number of parts. Then

e(n) = Z (—1)k di (n) = Z (—1)k [xkq”] H (1+xq™)

k>0 k>0 m>1
= [¢"Y (D" [2"] T 0 +=2¢™)
k>0 m>1
= [ J]a=-am)=1g"] Y (-1)Fgeb2,
m>1 k=—o0

by the Euler Pentagonal Number Theorem. Thus
e (n) = (=1)* if n =k (3k — 1) /2 for some integer k,
0 otherwise,

which concludes the proof. O

2. CONGRUENCES FOR THE PARTITION NUMBER
We begin by proving an expansion theorem.

Theorem 2.1.

[T =3 (-1 @k +1)4(").

m>1 k>0

Proof. In the Jacobi Triple product Identity replace y by —y to obtain

o0

H (1 _ q27n) (1 _ qum—l) (1 _ y—1q27n—1) _ Z (_y)qu{

m>1 k=—o00

But Hm21 (1 - yq2m71) =(1-qy) Hm21 (1 - yq2m+1) S0

@ JlO-y )=y ') =) =(—ap) " Y (=)
m>1 k=—o00
Now
- Y (' = 0-g)! (1 +>3 () + (7 q’“2>
k=—o00 k=1

o

L+ g™+ )y ((—y)k + (—y)_k) gc

m>1 m>0 k=1
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Let k2 + m = m’ and eliminate m from the summation. Then m = m/ — k2 > 0
so k2 < m’ 50 k < piy where pi, = [vVm/]. Also k > 1 and m > 0som’ > 1
whence the right hand side of the above expression is equal to 1+ Y y™¢™ +

’ _ k _k r_ 2
S @™ DR ((—y) + (—y) )ym ¥ so

o0

I—g)™" Y ("¢ =14 qRn

k=—o00 m>1

where R,,, = > "1™, ((—y)k + (—y)7k> ym=k* 4™ But

Hm

Hom,
Rm — Z k m k(k— 1)+Z k 7n k(k+1)

k=

m

—1 o

( 1)k+1 m—k(k+1) Z k m k(k+1)

k=1 k=1
= (=1)+ ym—um—um

)

SO
00

W)™ 3 =1 X g

k=—o0 m>1

-1

We may therefore set y = ¢~ in this expression. This gives

(Il—ay)™ Y (—9)*d" = 14 Y (1)t yntem
k=—o0 y=q~1 m2>1
_ 1+Z mm+m‘{21:t\ﬂj:m}‘
m>1
= 1+ > (- ™ (2m + 1) y™ ™,
m2>1

since |{i > 1: |Vi] =m}| = {izl:mgig(erl)Qfl}‘:2m+1. But

H (1 _ yq2m+1) (1 ylg2m 1) (1 _ q2m)y:q*1 _ H (1 . q2m)3

m>1 m>1

so, from (2),

I a-m) _1+Z ™ (2m + 1) g™ ™,

m>1 m>1

and the result follows by replacing ¢ by ¢*/2. O

With these results, we may now prove a remarkable congruence for the partition
number. The following lemma is needed.
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Lemma 2.2. Let ag,aq,... be integers, and let m be a non-negative integer not
congruent to 0 modulo 5. Then
5
[¢™] (a0 + a1qg + azg® +--+)” = 0 mod 5.
Proof. Now

5 5
[q™] (a0 + a1q + a2g® + - -) [q™] (a0 + a1q + -+ + amg™)

51 , 4
— E 20 [
= ﬁao ...anTLn7

i0r i >0 00 -+ -l
where the sum is over all iy, ..., 4, such that ig +---+4,, =5 and iy + 2is +--- +
Mmiy, = m. But m is not congruent to 0 modulo 5 so not all of iy, 2is,- -+, mi,, are

congruent to 0 modulo 5. Suppose that ji; is not congruent to 0 modulo 5. Then,
in particular, 4; is not congruent to 0 modulo 5. But 0 < i; < 5 so ; # 0. Thus

none of ig, ..., %, is equal to 5 since their sum is 5. Then
5!
- — =0.
iol. . im!
The result follows since a. - - - a’m is an integer. g

The above lemma is in fact more general, since “5” may be replaced by an
arbitrary prime throughout (primality is necessary since, for example, 4!/2!2 is not
congruent to 0 modulo 4).

Theorem 2.3. p(5n — 1) =0 mod 5.

Proof. Throughout this proof, I shall use = to denote congruence modulo 5. Let

Flo=q]](1-¢"".

k>1

i 3
Fly=qJO-d)J](0-d")".
i>1 k>1
From the Euler Pentagonal Number Theorem and Theorem 2.1 we have

F(q) = gq i (_1)m qm(Sm—l)/QZ(_l)k (2k+ 1) q(k;rl)

Then

m=-—00 k>0
_ Z (71)m+k 2k + 1) q1+m(3m71)/2+(k;1)'
m=—00,k>0

Now note that ¢[];-, (1- qi)f1 =F(q) 1> (1- q"c)f5 . Then

pGi- =[N [0-¢) " =@ F@[1-d)"
i1 k=1
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There are two cases.

Case 1: Assume that n = 0. Then [¢"] F (q) is non-zero if 1 +m (3m —1) /2 +
(k;rl) = n. Now consider 1 +m (3m — 1) /2. If m is odd, so m = 2a + 1, then 1 +
m(3m—1) /2 =1+m(Ba+1) = 14+m (—2a + 1) = 1+m (—m +2) = —m2+2m+1.
If mis even, som =2a,then 1+mB3m—-1)/2=1+a(6a—1)=1—-4a(a—1) =
1-2m (a — 1) = —m?+2m+1. Thus, for any m, 1+m (3m — 1) /2 = —m?+2m+1.
Then
1+m@Bm—1)/2=-A2+24+1ifm = A.

Similarly, for (*3'), if k odd then k = 2b+1,s0 (*}') =k (b+1) =k (—4b+1) =
k (—2k + 3) = —2k>+3k = 3k —2k. If k is even, so k = 2b, then ("}') =b(k+ 1) =
—4b(k + 1) = —2k (k + 1) = 3k — 2k. Thus, for any k, (*1') = 3k% — 2k. Then

(k;1>:3B2—QBifk=B.

By direct computation,
(A +2A+1mod5: A=0,...,4) = (1,2,1,3,3)
and
(3B> -~ 2B mod 5: B=0,...,4) =(0,1,3,1,0).

Then 14+ m (3m—1)/2+ (k;rl) = 0 implies that A =1 and B = 2, since the only
two residue classes, one from each of the above two lists, that sum to 0 mod 5 are
2 and 3, which implies that m = 1 and k = 2. Thus 2k + 1 = 0. We conclude that
[q"] F (¢) = 0. Thus the contribution to the right hand side of (3) is 0 from this
case.

Case 2: Assume that n is not congruent to 0 modulo 5. Then neither is 55 — n,
so, from Lemma 2.2, [¢% "] [T, (1 — ¢*) ~5 = 0 since (1- qk)75 is a series with
integer coefficients. It follows that the contribution to the right hand side of (3) is
0 in this case.

We conclude from (3) that p (55 — 1) = 0, establishing the result. O

The following mod 7 congruence may be obtained by a similar argument.

Theorem 2.4. p(7n —2) =0 mod 7.

Proof. Throughout this proof, I shall use = to denote congruence modulo 7. Let
NG
Gl="]](1-d).
i>1
Then

Glo=;JJa-a)°T[a-d".

i>1 i>k
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From Theorem 2.1 we have

Glo)= 3 (-1 2k + 1) 2k + 1) g2 (3D,
J,k>0

Now note that ¢* [],5, (1 — qi)f1 =G (@[l (1- qk)f7 . Then
p(i-2) = ["?(0-¢)" =[] e [[(0-d)

k>1
= Y (@16@) [ [-da)"
n>0 k>1
(4) p(7i-2)=> (a"1G(@) | [ J[(-d")"
n20 k>1

There are two cases.

Case 1: Assume that n = 0.We now proceed as before. It follows easily (the details
are omitted) that

)+ 1 1
2+(‘7J2r )Jr(k;r )E(2A+1)2+(23+1)2 if j=Aand k= B.
But by direct computation

(2A+1) mod 5: A=0,...,4) = (1,2,4,0,4,2,1)

so 2+ (31) + (*5') = 0 implies that A= B =3. Thus j = 7J +3 and k = 7K +3
for some J and K, so 2j + 1,2k + 1 = 0. We conclude that [¢"] G (¢) = 0. Thus the
contribution to the right hand side of (4) is 0 from this case.

Case 2: Assume that n is not congruent to 0 modulo 7. Then neither is 7j — n,
so, from the comment folowing Lemma 2.2, [¢7 "] [[,>, (1 — qk)77 = 0 since

(1 — qk)_7 is a series with integer coefficients. It follows that the contribution to
the right hand side of (4) is 0 in this case.

We conclude from (4) that p (75 — 2) = 0, establishing the result. O



