14: Partitions

MacMahon used this recursion formula to compute p(n) up to n = 200.
Here are some sample values from his table.

p(l) =1

p5) =17
p(10) = 42
p(15) = 176
p(20) = 627
p(25) = 1,958
p(30) = 5,604

p(40) = 37,338
p(50) = 204,226

p(100) = 190,569,292

p(200) = 3,972,999,029,388

These examples indicate that p(n) grows very rapidly with n. The largest
value of p(n) yet computed is p(14,031), a number with 127 digits. D. H.
Lehmer [42] computed this number to verify a conjecture of Ramanujan
which asserted that p(14,031) = 0 (mod 11%). The assertion was correct.
Obviously, the recursion formula in (8) was not used to calculate this value
of p(n). Instead, Lehmer used an asymptotic formula of Rademacher [54]
which implies

ek
p(n) ~ asn— oo,
4n\/§

where K = n(2/3)'/%. For n = 200 the quantity on the right is approximately
4 x 10'? which is remarkably close to the actual value of p(200) given in
MacMahon’s table.

In the sequel to this volume we give a derivation of Rademacher’s
asymptotic formula for p(n). The proof requires considerable preparation
from the theory of elliptic modular functions. The next section gives a crude
upper bound for p(n) which involves the exponential eX¥* and which can be
obtained with relatively little effort.

14.7 An upper bound for p(n)

Theorem 14.5 If n > 1 we have p(n) < V", where K = n(2/3)'/2.
PROOF. Let

F(x) = ﬁ(l -xX) =1+ ip(k)x",
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14.7: An upper bound for p(n)

and restrict x to the interval 0 < x < 1. Then we have p(n)x" < F(x), from
which we obtain log p(n) + n log x < log F(x), or

1
9) log p(n) < log F(x) + n log)—c.

We estimate the terms log F(x) and n log(1/x) separately. First we write

log F(x) = —log [](1 — x") = Zog(l—x Y Zx——
n=1 n=1 n=1m=1 m
QO 1 QO m” (X)l xm
2R Wt e
Since we have
1__ m
X ol x b xP e X"
1—x
and since 0 < x < 1, we can write
o 1 =x"
mx" "t < < m,
1-x
and hence
m(l—x)<1—x"‘ m(l — x)
X x™ x™
Inverting and dividing by m we get
1 x" <i x™ <1 X
ml—x _"ml—x""m?*1-x
Summing on m we obtain
© 1 x™ ® 1 7w x n?
1 =y = = -
og F(x) =ml—xm l—xz 25 61-x 6’
where
1 - x
t=
x

Note that ¢ varies from oo to 0 through positive values as x varies from
Oto 1.

Next we estimate the term n log(1/x). For t > 0 we have log(l + 1) < t.
But

1 - 1 1
l+t=1+ l -, solog—<t.
X X X
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14: Partitions

Now

1 2
(10) log p(n) < log F(x) + nlog — < %t + nt.

The minimum of (72/6t) + nt occurs when the two terms are equal, that is,
when 7?/(6t) = nt, or t = n/\/6n. For this value of ¢t we have

log p(n) < 2nt = 2nn/ﬁ = K\/ﬁ
so p(n) < eXV" as asserted. O
Note. J. H. van Lint [48] has shown that with a little more effort we can
obtain the improved inequality
kT
6(n — 1

forn > 1.

(1) pln) < —

Since p(k) = p(n) if k > n, we have, forn > 1,

F(x) > ip(k)xk > p(n) ixk _ llw(n)x" .

k=n n - X

k
Taking logarithms we obtain, insteady of (9), the inequality
1
log p(n) < log F(x) + nlog— + log(1 — x).
X

Since 1 — x = tx we have log(1 — x) = log ¢t — log(1/x), hence
(10) can be replaced by
72

6t

An easy calculation with derivatives shows that the function

(12) log p(n) < +(n—1x + logt

2

f(t)=%+(n— )t + logt

has its minimum at

=1+ /14 [4n — D)n?/6]
B 2n — 1) :

Using this value of ¢ in (12) and dropping insignificant terms we obtain (11).

14.8 Jacobi’s triple product identity

This section describes a famous identity of Jacobi from the theory of theta
functions. Euler’s pentagonal number theorem and many other partition
identities occur as special cases of Jacobi’s formula.
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