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Abstract.Let S denote a subset of the positive integers, and let pS(n) be the associated partition
function, that is pS(n) denotes the number of partitions of the positive integer n into parts taken from
S. Thus, if S is the set of positive integers, then pS(n) is the ordinary partition function p(n). In
this paper, working in the ring of formal power series in one variable over the field of two elements
Z/2Z, we develop new methods for deriving lower bounds for both the number of even values and
the number of odd values taken by pS(n), for n ≤ N . New very general theorems are obtained, and
applications are made to several partition functions, including p(n).

1. Introduction

As usual, let p(n) denote the ordinary partition function, i.e., the number of ways a
positive integer n can be represented as a sum of positive integers. It has long been
conjectured that p(n) is even approximately half of the time, or, more precisely,

#{n ≤ N : p(n) is even} ∼ 1
2
N, (1.1)

as N → ∞. T. R. Parkin and D. Shanks [16] undertook the first extensive compu-
tations, which indicated that indeed (1.1) is likely true. Despite the venerability of
the problem, it was not even known that p(n) assumes even values infinitely often or
p(n) assumes odd values infinitely often until 1959, when O. Kolberg [8] established
these facts. Other proofs of Kolberg’s theorem were later found by J. Fabrykowski and
M. V. Subbarao [5] and by M. Newman [10]. In 1983, L. Mirsky [9] established the
first quantitative result by showing that

# {n ≤ N : p(n) is even (odd)} >
log log N

2 log 2
. (1.2)

An improvement was made by J.–L. Nicolas and A. Sárközy [12], who proved that

# {n ≤ N : p(n) is even (odd)} > (log N)c, (1.3)

for some positive constant c.
In the most recent investigations, the methods for finding lower bounds for the

number of occurrences of even values of p(n) have been somewhat different from those
for odd values of p(n). Greatly improving on previous results, Nicolas, I. Ruzsa, and
Sárközy [11] proved that

# {n ≤ N : p(n) is even } À
√

N (1.4)
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and

# {n ≤ N : p(n) is odd } À
√

Ne−(log 2+ε) log N
log log N . (1.5)

In an appendix to their paper [11], J.–P. Serre, using modular forms, proved that

# {n ≤ N : p(n) is even } > c
√

N, (1.6)

for every positive constant c. At present, this is the best result for even values of p(n).
The lower bound (1.6) has been improved by S. Ahlgren, [1] who used modular forms
to prove that

# {n ≤ N : p(n) is odd } À
√

N

log N
, (1.7)

provided that there is at least one value of n for which p(n) is odd. The lower bounds
(1.6) and (1.7) are currently the best known results.

Subbarao [22] first conjectured that in every arithmetic progression n ≡ r (mod t)
there are infinitely many values of n such that p(n) is even and that there are infin-
itely many values of n for which p(n) is odd. Several authors proved special cases of
this conjecture, and a summary of these results can be found in K. Ono’s paper [14].
For the case that p(n) is even, Ono [13] proved that there are infinitely many n in
every arithmetic progression n ≡ r (mod t) such that p(n) is even. He established an
analogous result for odd values of p(n), provided that there exists at least one such
n for which p(n) is odd. He then verified that indeed this is the case for all t ≤ 105.
Two years later, Ono [14] proved that the density of primes t exceeds 1 − 1/101500,
for which the arithmetic progressions n ≡ r (mod t), with r 6= 24−1 (mod t), have
infinitely many values of n for which p(n) is odd. The best quantitative results are
due to Ahlgren [1] who has proved both (1.4) and (1.7) for all arithmetic progressions,
with the same provision as above for odd values of p(n). The theory of modular forms
was the primary tool in proving all the results of Ahlgren, Ono, and Serre.

In this paper we develop new methods to examine the parity of p(n). In particular,
nothing from the theory of modular forms is used. Our methods are very simple and
general, and, as we demonstrate, apply to a large variety of partition functions. All
our work is effected in the ring of formal power series in one variable over the field of
two elements Z/2Z.

In Section 3, using our first approach, we give easy proofs of analogues of (1.4) and
(1.5) for a large class of partition functions, including p(n); more generally, p(r, s; n),
the number of partitions of the positive integer n into parts congruent to r, s, or r + s
modulo r + s; and c3(n), the number of partitions of n into three colors. Note that
p(2, 1; n) = p(n).

Our second approach is given in Section 4. Here we use elementary differential
equations over Z/2Z and some basic ideas in elementary algebraic number theory to
prove analogues of (1.4) and (1.5).

Using differential equations over Z/2Z, in Section 5, we generalize our ideas from
Section 4 to a very general class of partition functions. Let S denote the set of positive
integers coprime to a given fixed integer b, and let pS(n)denote the number of partitions
of a positive integer n into parts which belong to S. In Section 6, we apply the results
of Section 5 to obtain lower bounds for both the number of even values and the number
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of odd values of the partition function pS(n). In Section 7, we give another application
of the ideas in Section 5. Now let S denote the set of square-free integers which
are relatively prime to a fixed positive integer b, and let pS(n) denote the number of
partitions of the positive integer n into parts from S. We obtain lower bounds for
both the number of even values and the number of odd values of pS(n). Zaharescu [24]
had previously obtained results for the special case b = 1, i.e., when S is the set of
square-free integers.

2. The ring A

Let A := F2[[X]] be the ring of formal power series in one variable X over the field
with two elements F2 = Z/2Z, i.e.,

A = {f(X) =
∞∑

n=0

anXn : an ∈ F2 for all n}. (2.1)

The ring A is an integral domain. It is also a local ring, with maximal ideal generated
by X. An element f(X) =

∑∞
n=0 anXn ∈ A is invertible if and only if a0 = 1. Since 0

and 1 are the only elements of F2, we may write any element f(X) ∈ A in the form

f(X) = Xn1 + Xn2 + · · · , (2.2)

where the sum may be finite or infinite and 0 ≤ n1 < n2 < · · · . For any f(X) ∈ A,
one has

f 2(X) = f(X2). (2.3)

In other words, if f(X) is given by (2.2) then

f 2(X) = X2n1 + X2n2 + · · · . (2.4)

We need to know the shape of the division by 1 − X of a given series f(X) as in
(2.2). For any integers 0 ≤ a < b we have in A

Xa + Xb

1−X
=

Xa(1−Xb−a)

1−X
= Xa + Xa+1 + · · ·+ Xb−1. (2.5)

We put together pairs of consecutive terms Xn2k+1 + Xn2k+2 , and obtain

f(X)

1−X
=

Xn1 + Xn2

1−X
+

Xn3 + Xn4

1−X
+ · · ·+ Xn2k+1 + Xn2k+2

1−X
+ · · · (2.6)

=
(
Xn1 + Xn1+1 + · · ·+ Xn2−1

)
+

(
Xn3 + · · ·+ Xn4−1

)
+ · · ·

+
(
Xn2k+1 + · · ·+ Xn2k+2−1

)
+ · · · .

If the sum on the right side of (2.2) which defines f(X) is finite, say f(X) = Xn1 +
Xn2 + · · ·+ Xns , then

f(X)

1−X
=

(
Xn1 + Xn1+1 + · · ·+ Xn2−1

)
+· · ·+(

Xns−1 + Xns−1+1 + · · ·+ Xns−1
)

(2.7)

if s is even, and

f(X)

1−X
=

(
Xn1 + · · ·+ Xn2−1

)
+ · · ·+ (

Xns−2 + · · ·+ Xns−1−1
)

+
∞∑

n=ns

Xn (2.8)
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if s is odd. On A we have a natural derivation which sends an f(X) ∈ A to f ′(X) =
df
dX
∈ A,

f(X) =
∞∑

n=0

anXn → f ′(X) =
∞∑

n=1

nanX
n−1. (2.9)

Note that for any f(X) ∈ A one has

f ′′(X) = 0. (2.10)

Let us also remark that for any f(X) given in the form (2.2), the condition

f ′(X) = 0 (2.11)

is equivalent to the condition that all the exponents nj are even numbers.

3. The parity problem for partition functions. First approach

Let

f(a, b) :=
∞∑

n=−∞
an(n+1)/2bn(n−1)/2, |ab| < 1.

By the Jacobi triple product identity [2, p. 21, Thm. 2.8], [4, p. 35, Entry 19],

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞, (3.1)

where

(a; q)∞ =
∞∏

n=0

(1− aqn), |q| < 1.

In particular, if a = −qr and b = −qs, where r and s are positive integers and |q| < 1,
then, by (3.1),

f(−qr,−qs) =
∞∑

n=−∞
(−1)nq{(r+s)n2+(r−s)n}/2 = (qr; qr+s)∞(qs; qr+s)∞(qr+s; qr+s)∞.

(3.2)
Setting r + s = t, define the partition function p(r, s; n) by

∞∑
n=0

p(r, s; n)qn =
1

f(−qr,−qs)
=

1

(qr; qt)∞(qs; qt)∞(qt; qt)∞
, (3.3)

where |q| < 1. Thus, p(r, s; n) denotes the number of partitions of the positive integer
n into parts congruent to either r, s, or t modulo t. In particular, if r = 2 and s = 1,
then

∞∑
n=0

p(2, 1; n)qn =
1

f(−q2,−q)
=

1

(q2; q3)∞(q; q3)∞(q3; q3)∞
=

1

(q; q)∞
, (3.4)

i.e., p(2, 1; n) = p(n), the ordinary partition function; moreover, in this case (3.2)
reduces to Euler’s pentagonal number theorem [2, p. 11, Cor. 1.7]. The partition
function p(r, s; n) appears in a famous theorem of I. Schur [20, Satz V], [21, pp. 453–
50], but with additional retrictions on successive summands in the partition of n.



ON THE PARITY OF PARTITION FUNCTIONS 5

By reducing the coefficients modulo 2 and replacing q by X in (3.2), we find that, if
1/Fr,s(X) is the image of the infinite series of (3.2) in A, then

1

Fr,s(X)
:=

∞∑
n=−∞

X(tn2+(r−s)n)/2, (3.5)

which we write in the form

1 = Fr,s(X)

(
1 +

∞∑
n=1

(
X(tn2+(r−s)n)/2 + X(tn2−(r−s)n)/2

))
. (3.6)

Here, Fr,s(X) has the form

Fr,s(X) = 1 + Xn1 + Xn2 + · · ·+ Xnj + · · · . (3.7)

where, of course, the positive integers n1 < n2 < · · · depend on r and s. Clearly, from
(3.3) and (3.7)

#{1 ≤ n ≤ N : p(r, s; n) is odd } = #{nj ≤ N} (3.8)

and

#{1 ≤ n ≤ N : p(r, s; n) is even } = N −#{nj ≤ N}. (3.9)

We first establish a lower bound for #{nj ≤ N}. Using (3.7), write (3.6) in the form
(∑

j≥1

Xnj

)(
1 +

∞∑
n=1

(
X(tn2+(r−s)n)/2 + X(tn2−(r−s)n)/2

))

=
∞∑

n=1

(
X(tn2+(r−s)n)/2 + X(tn2−(r−s)n)/2

)
. (3.10)

Asymptotically, there are
√

2N/t terms of the form X(tm2+(r−s)m)/2 less than XN on
the right side of (3.10). For a fixed positive integer nj, we determine how many of
these terms appear in a series of the form

Xnj

(
1 +

∞∑
n=1

(
X(tn2+(r−s)n)/2 + X(tn2−(r−s)n)/2

))
, (3.11)

arising from the left side of (3.10). Thus, for a fixed nj < N ,we estimate the number
of integral pairs (m,n) of solutions of the equation

nj +
tn2

2
+

(r − s)n

2
=

tm2

2
+

(r − s)m

2
, (3.12)

which we put in the form

2nj = tm2 + (r − s)m− tn2 − (r − s)n = (m− n)(tm + tn + r − s). (3.13)

The number of divisors of 2nj is Oc

(
N

c
log log N

)
for any fixed c > log 2, by a result of

S. Wigert [23] and S. Ramanujan [17], [18, p. 80]. Thus each of the numbers m−n and

tm+tn+r−s can assume at most N
c

log log N values. Since the pair (m−n, tm+tn+r−s)
uniquely determines the pair (m,n), it follows that the number of solutions to (3.13)
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is Oc

(
N

c
log log N

)
, where c is any constant such that c > 2 log 2. A similar argument can

be made for the terms in (3.10) of the form X(tm2−(r−s)m)/2.
Returning to (3.10) and (3.11), we see that each series of the form (3.11) has at

most N
c

log log N terms X(tm2+(r−s)m)/2 up to XN that appear on the right side of (3.10).

It follows that there are at least N
1
2
− c

log log N numbers nj ≤ N that are needed to match

all the
[√

2N/t
]

terms X(tm2+(r−s)m)/2 up to XN on the right side of (3.10). Again,

an analogous argument holds for terms of the form X(tm2−(r−s)m)/2. We have therefore
proved the following theorem.

Theorem 3.1. For each fixed c with c > 2 log 2 and N sufficiently large,

#{n ≤ N : p(r, s; n) is odd } ≥ N
1
2
− c

log log N . (3.14)

Corollary 3.2. For each fixed c with c > 2 log 2 and N sufficiently large,

#{n ≤ N : p(n) is odd } ≥ N
1
2
− c

log log N . (3.15)

Next, we provide a lower bound for #{n ≤ N : p(r, s; n) is even }. Let {m1,m2, . . . }
be the complement of the set {0, n1, n2, . . . } in the set of natural numbers {0, 1, 2, . . . },
and define

Gr,s(X) = Xm1 + Xm2 + · · · ∈ A. (3.16)

Then

Gr,s(X) + Fr,s(X) = 1 + X + X2 + · · ·+ Xk + · · · = 1

1−X
. (3.17)

Since, by (3.9),

#{mj ≤ N} = N −#{nj ≤ N} = {n ≤ N : p(r, s; n) is even }, (3.18)

we need a lower bound for #{mj ≤ N}. Using (3.17) in (3.6), we find that

1 + Gr,s(X)

(
1 +

∞∑
n=1

(
X(tn2−(r−s)n)/2 + X(tn2+(r−s)n)/2

))

=
1

1−X

(
1 +

∞∑
n=1

(
X(tn2−(r−s)n)/2 + X(tn2+(r−s)n)/2

))

=
1

1−X

(
1 + X(t−(r−s))/2 + X(t+(r−s))/2 + X(4t−2(r−s))/2 + X(4t+2(r−s))/2 + · · ·

+X(tn2−(r−s)n)/2 + X(tn2+(r−s)n)/2 + X(t(n+1)2−(r−s)(n+1))/2 + · · ·
)

. (3.19)

Here we have assumed without loss of generality (since f(a, b) = f(b, a)) that r ≥ s,
and have put the terms of the sum on the right side of (3.19) in increasing order of
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their exponents. By (2.6), we see that the right side of (3.19) equals

1 + · · ·+ X(t−r+s)/2−1 +
(
X(t+r−s)/2 + · · ·+ X(4t2−2(r−s))/2−1

)

+
(
X(4t2+2(r−s))/2 + · · ·+ X(9t2−3(r−s))/2−1

)
+ · · ·

+
(
X(t(n−1)2+(r−s)(n−1))/2 + · · ·+ X(tn2−(r−s)n)/2−1

)

+
(
X(tn2+(r−s)n)/2 + · · ·+ X(t(n+1)2−(r−s)(n+1))/2−1

)
+ · · · . (3.20)

Note that if (t−r+s)/2−1 = 0, i.e., s = 1, then the term X(t−r+s)/2−1 is to be deleted

from (3.20). Since the gap between X(tn2−(r−s)n)/2 and X(tn2+(r−s)n)/2 contains (r− s)n
terms that are missing from the series (3.20), and this comes after a segment of

tn2

2
− (r − s)n

2
−

(
t(n− 1)2

2
+

(r − s)(n− 1)

2

)
= 2sn− s

terms that do appear in (3.20), we see that (3.20) contains asymptotically

2s

2s + (r − s)
N =

2s

t
N

terms up to XN . Now the sum in parentheses on the left side of (3.19) has asymptot-

ically 2
√

2N/t nonzero terms up to XN . Thus Gr,s(X) must have at least s
√

N/(2t)
nonzero terms up to XN in order for the left side of (3.19) to have at least 2sN/t terms
up to XN to match those on the right side of (3.19). We have therefore proved the
following result.

Theorem 3.3. For any fixed constant c such that c < s/
√

2t, and for N sufficiently
large,

#{n ≤ N : p(r, s; n) is even } ≥ c
√

N. (3.21)

Corollary 3.4. For each fixed constant c with c < 1/
√

6, and for N sufficiently large,

#{n ≤ N : p(n) is even } ≥ c
√

N. (3.22)

We now give further applications of Theorems 3.1 and 3.3.
Recall Jacobi’s identity [4, p. 39, Entry 24(ii)]

(q; q)3
∞ =

∞∑
n=0

(−1)n(2n + 1)qn(n+1)/2, |q| < 1. (3.23)

Observe that
1

(q; q)3∞
=

∞∑
n=0

c3(n)qn,

where c3(n) denotes the number of partitions of the positive integer n into parts with
three distinct colors. The image of the right side of (3.23) in A is

∞∑
n=0

Xn(n+1)/2.
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Hence, by the same arguments that we used to prove Theorem 3.1, we can derive the
following theorem.

Theorem 3.5. For each fixed c, with c > 2 log 2, and for N sufficiently large,

#{n ≤ N : c3(n) is odd} ≥ N
1
2
− c

log log N .

In order to obtain a result for c3(n) like that in Theorem 3.3, we proceed as we did
with (3.19) to find that

1 + G(X)

(
1 +

∞∑
n=1

Xn(n+1)/2

)
=

1

1−X

(
1 +

∞∑
n=1

Xn(n+1)/2

)
, (3.24)

where G(X) is the obvious analogue of Gr,s(X) which we defined in (3.16). Next,
observe that, by (2.6), the right hand side of (3.24) can be written in the form

1 +
(
X3 + X4 + X5

)
+

(
X10 + X11 + X12 + X13 + X14

)

+ · · ·+ (
Xn(2n+1) + · · ·+ X(2n+1)(n+1)−1

)
+ · · · . (3.25)

The gap of missing terms between X(2n−1)n and Xn(2n+1) consists of 2n terms, and
this comes after a segment containing 2n − 1 terms that do appear. Thus, the series
(3.25) has asymptotically N/2 terms up to XN . The sum on the left side of (3.24) has

asymptotically
√

N/2 terms up to XN . Thus, G(X) must have at least
√

N/2 terms
up to XN in order for the left side of (3.24) to have at least N/2 terms. Hence, we
have proved the following theorem.

Theorem 3.6. For each fixed c with c < 1/
√

2, and for N sufficiently large,

#{n ≤ N : c3(n) is even} ≥ c
√

N.

The ideas in this section can be generalized to any series that is superlacunary.

Definition 3.7. A power series is superlacunary if it has the form
∞∑

n=−∞
dn(a, b, c)qan2+bn+c,

where a, b, and c are integers, with a > 0, and the numbers dn(a, b, c) are constants.

See a paper by K. Ono and S. Robins [15, Thm. 2] wherein they characterize superla-
cunary series that are certain kinds of cusp forms. The most interesting superlacunary
series are those that can be represented as eta-products, i.e., as products of the form
(qa; qa)∞, where a is a positive integer. We describe two such examples.

In his notebooks [19, Chap. 17, Entries 8 (ix), (x)], [4, pp. 114–115], Ramanujan
recorded the elegant identities

∞∑
n=−∞

(6n + 1)q3n2+n =
(q; q)5

∞
(q2; q2)2∞

(3.26)

and ∞∑
n=−∞

(3n + 1)q3n2+2n =
(q; q)2

∞(q4; q4)2
∞

(q2; q2)∞
. (3.27)
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These identities can be easily proved by employing the quintuple product identity; see
[3, pp. 19–20]. The identity (3.26) was perhaps first rediscovered by N. J. Fine [6,
p. 83], although he did not publish his proof for several years. The first published
proof of (3.27) is due to B. Gordon [7].

Define the partition functions P1(n) and P2(n) by
∞∑

n=0

P1(n)qn =
(q2; q2)2

∞
(q; q)5∞

=
1

(q; q)3∞(q; q2)2∞

and ∞∑
n=0

P2(n)qn =
(q2; q2)∞

(q; q)2∞(q4; q4)2∞
=

1

(q; q)∞(q; q2)∞(q4; q4)2∞
,

respectively. Observe that P1(n) is the number of partitions of the positive integer n
into parts with three distinct colors and into odd parts with two distinct colors, with
the summands therefore having a total of five distinct colors. Also, P2(n) is the number
of partitions of n into unrestricted parts of one color, odd parts of one color, and parts
which are multiples of four having two distinct colors, for a total of four colors.

The images of the left sides of (3.26) and (3.27) in A are
∞∑

n=−∞
X3n2+n and

∞∑
n=−∞

X12n2+4n, (3.28)

respectively. By the methods of this section, we can therefore prove analogues of
Theorem 3.1, wherein p(r, s; n) is replaced by either P1(n) or P2(n). By the pentagonal
number theorem, the image of (3.26) in (3.28) is the same as that of (q2; q2)∞. Hence,
an analogue of Corollary 3.4 can be stated in which p(n) is replaced by P1(n) and N
is replaced by N/2. Also, observe that the image of (3.27) in (3.28) is f(−X16,−X8).
Thus, from Theorem 3.3, we obtain the next corollary.

Corollary 3.8. For any fixed c with c < 2/
√

3, and for N sufficiently large,

#{n ≤ N : P2(n) is even} ≥ c
√

N.

4. The parity problem for p(n). Second approach

We start from the generating function identity (3.4). Let us compute

log F (q) = −
∞∑

n=1

log(1− qn) =
∞∑

n=1

∞∑
m=1

qnm

m
. (4.1)

By applying the operator q d
dq

we obtain

qF ′(q)
F (q)

= q
d

dq
(log F (q)) =

∞∑
n=1

∞∑
m=1

nqnm =
∞∑

k=1

qk
∑

n|k
n =

∞∑

k=1

σ(k)qk, (4.2)

where σ(k) denotes the sum of divisors of k. If we denote by H(X) the image in A of
the series

∑∞
k=1 σ(k)Xk, then from (4.2) we derive an equality in A, namely,

XF ′(X) = F (X)H(X). (4.3)
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It is easy to see that

H(X) =
∑
n,r≥0

X2r(2n+1)2 =
∞∑

n=1

Xn2

+
∞∑

n=1

X2n2

. (4.4)

We write F (X) in the form F (X) = 1 + Xn1 + Xn2 + · · · , and choose a large positive
integer N. We proceed to derive from (4.3) a lower bound for #{nj ≤ N}. Let us write
(4.3) in the form

XF ′(X) + (Xn1 + Xn2 + · · · )H(X) = H(X) =
∞∑

n=1

Xn2

+
∞∑

n=1

X2n2

. (4.5)

Each of the terms Xn2
from the right side of (4.5) must also appear on the left side of

(4.5). There are [
√

N ] such terms with n2 ≤ N . If at least half of them are canceled

by terms from the series XF ′(X), then F ′(X) has at least [
√

N ] terms up to XN , and

hence F (X) has at least [
√

N ] terms up to XN . This gives us the desired lower bound
for #{nj ≤ N} in this case.

Assume now that less than half of the terms Xn2
with n2 ≤ N are canceled by terms

from XF ′(X). It follows that at least
√

N/2 such terms are left to be canceled by terms

from the series (Xn1 + Xn2 + · · · )H(X). Let us see how many terms of the form Xm2

with m2 ≤ N may appear in a series of the form XnjH(X) for a fixed nj. Thus we
look separately at two diophantine equations in positive integers n,m, namely,

nj + n2 = m2, (4.6)

and

nj + 2n2 = m2. (4.7)

If n, m satisfy (4.6), then both n−m and n + m are divisors of nj. Thus each of these

numbers can take at most N
c

log log N values for any fixed c > log 2 and any N large
enough. The pair (n,m) being determined by n + m and n − m, it follows that the

equation (4.6) has at most N
2c

log log N solutions.
We now turn to the equation (4.7). Here of course we have to use the constraint

that m2 ≤ N ; otherwise we may have infinitely many solutions. We count the number
of solutions as follows. By (4.7) it follows that m + n

√
2 divides nj in the ring Z[

√
2],

and the ideal generated by m + n
√

2 has norm nj. We first count the number of ideals

in Z[
√

2] generated by m + n
√

2 as n,m run over the set of solutions of the equation
(4.7). Let nj = pk1

1 · · · pks
s be the decomposition into prime factors of nj. We take each

prime factor pi and look at its decomposition in Z[
√

2]. There are three alternatives.
The first is that pi ramifies in Z[

√
2], in which case the ideal (pi) is the square of a

prime ideal of Z[
√

2]. This only happens for pi = 2. The corresponding prime ideal in
Z[
√

2] will be generated by
√

2. The second case is when pi is inert in Q(
√

2), that is,
when (pi) is a prime ideal in Z[

√
2]. In this case, if n,m satisfy (4.7), then in Z[

√
2], pi

divides one of the factors n + m
√

2 or n−m
√

2. Say it divides the first one. Then we
have

m + n
√

2 = pi(a + b
√

2)



ON THE PARITY OF PARTITION FUNCTIONS 11

for some a, b ∈ Z, from which it follows that pi divides both n and m. For such a prime
pi, the exponent ki needs to be an even number in order for the equation (4.7) to have
solutions. Moreover, if ki is even, then for any n,m satisfying (4.7) the exponent of the
prime ideal (pi) in each of the factors m + n

√
2 and m − n

√
2 equals ki/2. The third

case is when pi splits in Z[
√

2], in which case one has (pi) = PiP
′
i for some prime ideals

Pi, P ′
i of Z[

√
2]. For such a prime pi, if n, m satisfy (4.7) and Pi divides m + n

√
2 then

P ′
i divides m− n

√
2.

Let us rewrite now the prime decomposition of nj in the form

nj = 2kpk1
1 · · · pkr

r q2l1
1 · · · q2lt

t , (4.8)

where p1, . . . , pr are the prime divisors of nj which split in the field Q(
√

2) and q1, . . . , qt

are the prime divisors of nj which are inert in Q(
√

2). As remarked above, we may
assume that the exponents of q1, . . . , qt in nj are even numbers; otherwise there are no
solutions to (4.7).

Next, the decomposition of nj into prime ideals in Z[
√

2] will be

nj = (
√

2)2kP k1
1 P ′

1
k1 · · ·P kr

r P ′
r
kr(q1)

2l1 · · · (qt)
2lt . (4.9)

Now for any integers n,m satisfying (4.7), the exponent of (
√

2) in m + n
√

2 must
equal k, and for each i = 1, . . . , t, the exponent of (qi) in m + n

√
2 must equal li. For

i = 1, . . . , r, if bi denotes the exponent of Pi in m+n
√

2, then the exponent of Pi in the
remaining factor m−n

√
2 will equal ki−bi, and so, the exponent of P ′

i in m+n
√

2 will
also equal ki − bi. That is to say, the exponents of P ′

1, . . . , P
′
r in m + n

√
2 are uniquely

determined by the exponents of P1, . . . , Pr, respectively. Since bi may assume values
from 0 to ki for i = 1, . . . , r, it follows that there are only (1 + k1) · · · (1 + kr) possible
choices for the ideal (m + n

√
2). Note that (1 + k1) · · · (1 + kr) is not larger than the

number of divisors of nj, which in turn is not larger than N
c

log log N . Thus the number of

ideals of the form (m+n
√

2), with n,m satisfying (4.7), is bounded by N
c

log log N . Next,
let us see how many solutions n,m produce the same ideal (n + m

√
2). If n,m and,

respectively, n′, m′ satisfy (4.7) and the ideals (n + m
√

2) and (m′ + n′
√

2) coincide,
then there exists a unit u in the ring Z[

√
2] such that

m′ + n′
√

2 = u(m + n
√

2). (4.10)

Since n,m, n′,m′ are positive integers, u will be positive. If we denote by η > 1 the
fundamental unit (actually η = 1+

√
2), then we have u = ηv for some integer v. Since

both factors m′ + n′
√

2 and m + n
√

2 are O(
√

N), from (4.10) it follows that |v| is
bounded by log N. Thus the number of solutions n,m of (4.7) which produce the same
ideal (m + n

√
2) is bounded by log N. In conclusion, the number of solutions to (4.6)

and (4.7) are both bounded by N
2c

log log N . As a consequence, at most N
2c

log log N terms of

the form Xm2
with m2 ≤ N may be canceled by each of the series of the form xnjH(X).

Hence one must have
#{nj ≤ N} ≥ N

1
2
− 2c

log log N (4.11)

in order for all the remaining
√

N/2 terms up to XN from the right side of (4.5) to be
canceled by the left side of (4.5). This completes the second proof of Theorem 3.1.
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We now provide another proof for Theorem 3.3. We start by introducing the same
series

G(X) = Xm1 + Xm2 + · · · ∈ A, (4.12)

where the set {m1,m2, . . . } is the complement of the set {0, n1, n2, . . . } in the set of
natural numbers. We have as before

G(X) + F (X) =
1

1−X
. (4.13)

Again we need a lower bound for #{mj ≤ N}, where N is a fixed large positive integer.
This time, instead of (3.6) we are going to use the equality (4.3). Differentiating (4.13)
we have

G′(X) + F ′(X) =
1

(1−X)2
(4.14)

In (4.13) and (4.14) we solve for F (X) and F ′(X) respectively, then introduce these
expressions in (4.3) to obtain

X

(1−X)2
−XG′(X) = XF ′(X) = F (X)H(X) =

(
1

1−X
−G(X)

)
H(X). (4.15)

Multiplying both sides of (4.15) by 1−X, we see that

X

1−X
−X(1−X)G′(X) = (1− (1−X)G(X)) H(X), (4.16)

which we write in the form

X(1−X)G′(X)+ (1− (1−X)G(X)) H(X) = X +X2 +X3 + · · ·+Xn + · · · . (4.17)

Denote M = #{mj ≤ N}. Then (1− (1−X)G(X)) has at most 1+2M nonzero terms

up to XN . Since H(X) has at most (1+1/
√

2)
√

N nonzero terms up to XN , we deduce
that

#{nonzero terms in (1− (1−X)G(X))H(X) up to XN } ≤ (1 + 2M)(1 + 1/
√

2)
√

N.
(4.18)

Similarly, G′(X) has at most M nonzero terms up to XN , therefore

#{nonzero terms in X(1−X)G′(X) up to XN } ≤ 2M. (4.19)

Since the right side of (4.17) has N nonzero terms up to XN , from (4.17), (4.18) and
(4.19) we deduce that

2M + (1 + 2M)

(
1 +

1√
2

)√
N ≥ N. (4.20)

This completes a second proof of Theorem 3.3. More precisely, from (4.20) it follows
that for any constant c < 1− 1/

√
2 and any N large enough one has

#{n ≤ N : p(n) is even } ≥ c
√

N. (4.21)
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5. Results for more general partition functions

In this section we use the method employed in the previous section to study the parity
of more general partition functions. Denote N = {0, 1, 2, . . . } and N∗ = {1, 2, . . . }.
For any subset S of N∗ and any positive integer n we denote by pS(n) the number of
partitions of n with all parts in S. The object of this section is to study the parity of
pS(n) for a given S, by means of the associated differential equation obtained below,
which is similar to (4.3).

As before, we start from the generating function identity

FS(q) := 1 +
∞∑

n=1

pS(n)qn =
∏
n∈S

1

1− qn
. (5.1)

We again compute

log FS(q) = −
∑
n∈S

log(1− qn) =
∑
n∈S

∞∑
m=1

qnm

m
. (5.2)

By applying the operator q d
dq

we obtain

qF ′
S(q)

FS(q)
= q

d

dq
(log FS(q)) =

∑
n∈S

∞∑
m=1

nqnm =
∞∑

k=1

qk
∑

n∈S,n|k
n =

∞∑

k=1

σS(k)qk, (5.3)

where we denote by σS(k) the sum of those divisors of k which belong to S. Let HS(X)
denote the image in A of the series

∑∞
k=1 σS(k)qk. Then from (5.3) we derive

XF ′
S(X) = FS(X)HS(X). (5.4)

In the previous section we relied heavily on the properties of the particular function
H(X) given by (4.4). We need to understand which properties the series HS(X) needs
to satisfy in order to be able to obtain results on the parity of pS(n), on the same lines
as in the proofs from the previous section. We have seen that a certain diophantine
equation plays an important role in the proof of the lower bound for the number of
n ≤ N for which p(n) is odd. Also, the fact that the series H(X) from (4.4) does
not have too may nonzero terms up to XN played an essential role in the proof of the
lower bound for the number of n ≤ N for which p(n) is even. With these in mind, we
introduce two counting functions. For any positive integer N and any element

g(X) = Xm1 + Xm2 + · · ·+ Xmj + · · · ∈ A, (5.5)

we set

B(g(X), N) := #{mj ≤ N}. (5.6)

Thus if the sequence of nonzero terms from the right side of (5.5) is sparse, B(g(X), N)
will be significantly smaller than N, as N →∞. In particular, we say that the sequence
of nonzero terms of g(X) has zero density, provided one has

lim
n→∞

B(g(X), N)

N
= 0. (5.7)
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The second counting function is defined as follows. For any g(X) as in (5.5), any
positive integer N and any integer a with 1 ≤ a ≤ N, denote by D(g(X), N, a) the
number of solutions of the equation

a = mj −mi (5.8)

where the exponents mi, mj appear on the right side of (5.5), and mj ≤ N. Then set

D(g(X), N) = max
1≤a≤N

D(g(X), N, a).

If there is at most one term on the right side of (5.5), that is, if g(X) = 0 or g(X) = Xm

for some integer m ≥ 0, then evidently D(g(X), N) = 0 for any N. For any element
g(X) of A which has at least two nonzero terms on the right side of (5.5), one has
D(g(X), N) ≥ 1 for N large enough. Note that for any g(X) ∈ A and any positive
integer N one has

D(g(X), N) ≤ B(g(X), N). (5.9)

Let now S be a subset of N∗. We would like to obtain information on the parity of the
associated partition function pS(n) in terms of the behavior of the counting functions
B(HS(X), N) and D(HS(X), N). We assume HS(X) has at least two terms so that
D(HS(X), N) ≥ 1 for N large enough, and choose such an N.

Let us consider first the problem of providing a lower bound for the number of
integers n ≤ N for which pS(n) is odd. We write

FS(X) = 1 + Xn1 + Xn2 + · · ·+ Xnj + · · · , (5.10)

with 1 ≤ n1 < n2 < · · · < nj < . . . , and

HS(X) = Xm1 + Xm2 + · · ·+ Xmj + · · · , (5.11)

with 1 ≤ m1 < m2 < · · · < mj < . . . . The sums on the right side of (5.10) and (5.11)
may be finite or infinite. The problem is to provide a lower bound for #{nj ≤ N}. We
use the equality (5.4), which we write in the form

XF ′
S(X)+ (Xn1 + · · ·+ Xnk + · · · ) HS(X) = HS(X) = Xm1 +Xm2 + · · ·+Xmj + · · · .

(5.12)
The number of nonzero terms up to XN on the right side of (5.12) equals B(HS(X), N).
These terms must also appear on the left side of (5.12). If at least half of these terms
do appear in XF ′

S(X), then, since F (X) has at least as many nonzero terms up to XN

as XF ′(X) has, it follows that

#{nj ≤ N} ≥ B(HS(X), N)

2
. (5.13)

Assume now that less than half of the nonzero terms from the right side of (5.12)
appear in XF ′(X). Then at least half of these terms appear in the series

(Xn1 + · · ·+ Xnk + · · · )(Xm1 + · · ·+ Xmi + · · · ). (5.14)

For each fixed nk ≤ N, the number of solutions of the equation

nk + mi = mj (5.15)

is bounded by D(HS(X), N). Therefore each series of the form XnkH(X) contains at
most D(HS(X), N) terms from the right side of (5.12). We deduce that there must be
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at least B(HS(X), N)/ {2D(HS(X), N)} terms Xnk with nk ≤ N in order for all the
terms up to XN from the right side of (5.12) to also appear on the left side of that
equality. If we compare this with (5.13) we see that in all cases one has

#{nj ≤ N} ≥ B(HS(X), N)

2D(HS(X), N)
. (5.16)

This gives the required lower bound for the number of integers n ≤ N for which pS(n)
is odd, assuming that HS(X) has at least two nonzero terms. We claim that if HS(X)
is not zero, this series always has at least two nonzero terms.

Indeed, let us assume that there exists a subset S of N∗ for which HS(X) consists of
exactly one nonzero term, that is, HS(X) = Xm for some integer m ≥ 1. Then σS(m)
is odd, and σS(n) is even for any integer n ≥ 1 with n 6= m. Since σS(m) is odd, it
follows that m has an odd number of odd divisors which belong to S. As a consequence,
at least one element of S is odd. Let m0 be the smallest odd integer which belongs to
S. Then by the definition of σS it is clear that σS(m0) is odd, and so m0 coincides with
m. Now let us consider the parity of σS(2m). Any odd divisor of 2m must also divide
m. But m is the smallest odd element of S. It follows that m is the only odd divisor of
2m which belongs to S, and hence σS(2m) is odd. The contradiction obtained shows
that HS(X) always has at least two nonzero terms, provided HS(X) 6= 0. In fact, the
reasoning above shows that if S has at least one odd element, and if m0 is the smallest
odd integer which belongs to S, then σS(2km0) is odd for any integer k ≥ 0. This
implies that for any constant c < 1/ log 2 and any S which contains at least one odd
element one has

B(HS(X), N) ≥ c log N (5.17)

for all N large enough.
On the other hand, if S consists only of even numbers, then σS(n) will be even for

any integer n ≥ 1, and so HS(X) will be identically zero. In that case the equality
(5.4) reduces to

XF ′
S(X) = 0. (5.18)

This implies that all the terms from FS(X) have even exponents, but no information
on the number of nonzero terms of FS(X) up to XN can be derived from (5.18). For
this reason, in what follows we will only consider sets S which have at least one odd
element. Actually this is not much of a restriction, in the sense that the general case
can be reduced to this one. More precisely, let S be a subset of N∗ which consists
of even numbers only. Let 2r denote the largest power of 2 which divides each of the
elements of S. Say S = {2ra1, 2

ra2, . . . }. Consider the set S ′ = {a1, a2, . . . }. Evidently
pS(n) = 0 unless n is a multiple of 2r. If n = 2rk, then clearly pS(n) = pS′(k). In
particular the parity problem for pS(n) reduces to the analogous problem for pS′(k),
and the new set S ′ is of the type we want, in the sense that it contains at least one odd
element. These being said, we now state our lower bound for the number of n < N for
which pS(n) is odd, where S is of the type above.
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Theorem 5.1. Let S be a set of positive integers containing at least one odd element.
Then for all N large enough,

#{n ≤ N : pS(n) is odd } ≥ B(HS(X), N)

2D(HS(X), N)
. (5.19)

We now turn to the problem of providing lower bounds for the number of integers
n ≤ N for which pS(n) is even, where S is a given set of positive integers. Let
FS(X) and HS(X) be as in (5.10) and (5.11), respectively. Let {r1, r2, . . . } denote the
complement of the set {n1, n2, . . . } in N, and define

GS(X) = Xr1 + Xr2 + · · · ∈ A. (5.20)

Fix a large integer N. We need a lower bound for #{rj ≤ N}. As before, one has

GS(X) + FS(X) =
1

1−X
. (5.21)

Differentiating (5.21) we obtain

G′
S(X) + F ′

S(X) =
1

(1−X)2
. (5.22)

As in the previous section, at this point we solve for FS(X) and F ′
S(X) in (5.21) and

(5.22), respectively, and then introduce these expressions in (5.4). We find as before
that

X

(1−X)2
−XG′

S(X) =

(
1

1−X
−GS(X)

)
HS(X). (5.23)

Multiplying both sides by 1−X, we find that

X

1−X
−X(1−X)G′

S(X) = (1− (1−X)GS(X))HS(X), (5.24)

which we write in the form

X(1−X)G′
S(X) + (1− (1−X)GS(X))HS(X) = X + X2 + · · ·+ Xn + · · · . (5.25)

The right side of (5.25) has N nonzero terms up to XN . Let M = #{rj ≤ N}. Then
G′

S(X) has at most M nonzero terms up to XN , and hence the series X(1−X)G′
S(X)

has at most 2M nonzero terms up to XN . Next, the series 1 − (1 −X)GS(X) has at
most 1 + 2M nonzero terms up to XN , while the number of nonzero terms up to XN

in HS(X) equals B(HS(X), N). Therefore the product (1− (1−X)GS(X))HS(X) will
have at most (1 + 2M)B(HS(X), N) terms. Hence the total number of nonzero terms
up to XN on the left side of (5.25) is at most 2M + (1 + 2M)B(HS(X), N). It follows
that

2M + (1 + 2M)B(HS(X), N) ≥ N, (5.26)

which implies that

#{rj ≤ N} ≥ N −B(HS(X), N)

2(1 + B(HS(X), N))
. (5.27)

We therefore have obtained the following result.
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Theorem 5.2. For any set S of positive integers and for any positive integer N ,

#{n ≤ N : pS(n) is even } ≥ N −B(HS(X), N)

2(1 + B(HS(X), N))
. (5.28)

Theorems 5.1 and 5.2 provide lower bounds for the number of integers n ≤ N for
which pS(n) is odd, respectively even, in terms of the counting functions B(HS(X), N)
and D(HS(X), N). Some applications will be given in the next sections, where we study
certain particular classes of partition functions. We end this section with the following
result.

Theorem 5.3. Let S be a set of positive integers containing at least one odd element,
for which the sequence of nonzero terms of HS(X) has zero density. Then there are
infinitely many positive integers n for which pS(n) is even, and there are infinitely
many positive integers n for which pS(n) is odd.

The fact that there are infinitely many positive integers N for which pS(N) is even,
follows directly from Theorem 5.2, on combining (5.28) with (5.7). It remains to show
that there are infinitely many integers n for which pS(n) is odd. Notations being as in
(5.10) and (5.11), let us assume that there are only finitely many integers n for which
pS(n) is odd. Then FS(X) is a polynomial in X, say

FS(X) = 1 + Xn1 + Xn2 + · · ·+ Xnk . (5.29)

Since the sequence of nonzero terms of HS(X) is assumed to have zero density, there
must be gaps larger than nk between consecutive terms in HS(X). Let us choose such
a gap, say

HS(X) = Xm1 + · · ·+ Xms + Xms+1 + · · · , (5.30)

where ms+1 − ms > nk. Consider now the product FS(X)HS(X). The point here is
that the term Xnk+ms , obtained by multiplying Xnk from the right side of (5.29) with
Xms from the right side of (5.30), cannot be canceled by any other term. Therefore
Xnk+ms appears as one of the nonzero terms on the right side of (5.4). Clearly no term
from the left side of (5.4) can have such a high exponent. In conclusion FS(X) must
have infinitely many nonzero terms, and this completes the proof of the theorem.

We close this section with an application of Theorem 5.3. Let S consist of those
positive integers with all prime factors congruent to 3 (mod 4). Thus S is the monoid
generated by the prime numbers congruent to 3(mod 4). We need an explicit description
of HS(X). It is easy to see, for any given positive integer m, that Xm appears as a
nonzero term in HS(X) if and only if m can be expressed as a sum of two squares.
Then we may apply Theorem 5.3, since the sequence of numbers which are sums of
two squares has zero density. We thus have the following result.

Theorem 5.4. Let S consist of those positive integers with all prime factors congruent
to 3 (mod 4). Then there are infinitely many positive integers n for which pS(n) is even,
and there are infinitely many positive integers n for which pS(n) is odd.
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6. Partitions in parts coprime with a given number

In this section we study the parity problem for the number of partitions in parts
which are relatively prime to a given number. Thus we fix a positive integer, b say,
and then let S be the set of positive integers which are relatively prime to b. In
order to apply the results from the previous section, one needs firstly to find HS(X)
explicitly, secondly to estimate B(HS(X), N), and finally to provide an upper bound
for D(HS(X), N). Then insert the results in the statements of Theorems 5.1 and 5.2.

Let us consider the prime decomposition of the number 2b, say

2b = pr1
1 pr2

2 · · · prk
k ,

with p1 = 2 and p2, . . . , pk distinct odd primes, and r1, . . . , rk ≥ 1. Denote b0 =
p1p2 · · · pk.

A brief computation shows that

HS(X) =
∑

d|b0

∞∑
n=1

Xdn2

. (6.1)

If b = 1 we are in the case of the unrestricted partition function p(n). In that case
b0 = 2 so d = 1 or d = 2, and the right side of (6.1) reduces to the right side of (4.4).

¿From (6.1) one easily obtains an asymptotic formula for B(HS(X), N). More pre-
cisely, one has

B(HS(X), N) ∼
√

N
∑

d|b0

1√
d

=
√

N
∏

p|2b

(
1 +

1√
p

)
, (6.2)

where the product is over all prime factors of 2b. In order to bound D(HS(X), N) one
needs to take an integer a, with 1 ≤ a ≤ N and then bound the number of solutions
of the equation

a = dm2 − d′n2, (6.3)

with d, d′ divisors of b0 and n, m positive integers bounded, say, by
√

N.
If d = d′ we may proceed as with (4.6), since in this case m − n and m + n are

divisors of a. In case d 6= d′, we first divide (6.3) by the greatest common divisor of d
and d′. So we may assume in the following that d and d′ are relatively prime, and not
both of them equal to 1. Then D := dd′ > 1 and D will be a divisor of b0, Next, we
multiply (6.3) by d, and obtain an equation of the form

ad = x2 −Dy2, (6.4)

where x = dm and y = n. Then we treat the equation (6.4) in the same way we treated

(4.7), working this time in the ring of integers of the real quadratic field Q(
√

D). One

finds in this way that the number of solutions to (6.3) is Ob,c

(
N

c
log log N

)
for any fixed

c > 2 log 2. Therefore

D(HS(X), N) = Ob,c

(
N

c
log log N

)
. (6.5)

Using (6.2) and (6.5) in Theorem 5.1 and Theorem 5.2 we obtain the following results.
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Theorem 6.1. Let b be a positive integer, and let S denote the set of positive integers
which are relatively prime to b. Then, for each fixed c, with c > 2 log 2, and for N
sufficiently large in terms of b and c,

#{n ≤ N : pS(n) is odd } ≥ N
1
2
− c

log log N . (6.6)

Theorem 6.2. Let b be a positive integer and let S denote the set of positive integers

which are relatively prime to b. Then, for each fixed c with c <
(
2
∏

p|2b(1 + 1/
√

p)
)−1

,

and for N sufficiently large in terms of b and c,

#{n ≤ N : pS(n) is even } ≥ c
√

N. (6.7)

7. Partitions in parts square free and coprime to a given number

In this section we take S to be the set of square free numbers which are relatively
prime to a given positive integer b. In the case b = 1, we had investigated this problem
in [24].

Is is easy to see that, for any positive integer b,

HS(X) =
∞∑

n1,...,nk=1

Xp
n1
1 ···pnk

k , (7.1)

where p1, . . . , pk are as in the previous section.
In order to provide an asymptotic result for B(HS(X), N), note that the inequality

pn1
1 · · · pnk

k ≤ N is equivalent to n1 log p1 + · · ·+ nk log pk ≤ log N. This means that we
need to count lattice points (n1, . . . , nk) inside a k−dimensional body which looks like
a tetrahedron. The number of lattice points inside this body will equal the volume
of the body, plus an error bounded in terms of the surface area of the body. The
volume of the body is of size logk N (times a constant c which depends on the numbers
log p1, . . . , log pk). The surface area will be bounded by logk−1 N . Therefore we can
derive an asymptotic formula,

B(HS(X), N) ∼ c logk N. (7.2)

Here the constant c equals the volume of the body Ω in Rk given by

Ω = {(x1, . . . , xk) ∈ Rk : x1, . . . , xk ≥ 0, x1 log p1 + · · ·+ xk log pk ≤ 1}.
A linear change of variables yj = xj log pj, j = 1, . . . , k, transforms our body to

{(y1, . . . , yk) ∈ Rk : y1, . . . , yk ≥ 0, y1 + · · ·+ yk ≤ 1},
which has volume 1

k!
. Hence c = 1/(k! log p1 · · · log pk). If we denote by ω(n) the

number of distinct prime factors of a positive integer n, then k = ω(2b), and (7.2) may
be written in the form

B(HS(X), N) ∼ (log N)ω(2b)

ω(2b)!
∏

p|2b log p
. (7.3)

In order to obtain via Theorem 5.1 a nontrivial lower bound for the number of n ≤ N
with pS(n) odd, we need for D(HS(X), N) an upper bound which is of smaller order
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of magnitude than the size of B(HS(X), N). Generalizing the reasoning employed in
[24], we obtain a bound of the form

#{n ≤ N : pS(n) odd } À (log N)[
k+2
3 ] , (7.4)

where [x] denotes the greatest integer ≤ x. The reasoning is as follows. We need to
bound the number of solutions n1, . . . , nk,m1, . . . , mk of a diophantine equation of the
form

a = pm1
1 · · · pmk

k − pn1
1 · · · pnk

k .

We write the set {1, . . . , k} as a disjoint union of three sets:

M1 = {j : mj > nj},
M2 = {j : mj < nj},

and

M3 = {j : mj = nj}.
For any j ∈ M1, nj is uniquely determined by a, more precisely p

nj

j is the largest
power of pj which divides a. Similarly, for any j ∈ M2, mj is uniquely determined by
a. Dividing the above equation by the factors of the above two types, we are left with
an equation of the form:

a′ =

( ∏
j∈M3

p
tj
j

)( ∏
j∈M1

p
tj
j −

∏
j∈M2

p
tj
j

)
,

where tj = mj − nj if j ∈ M1, tj = nj −mj if j ∈ M2, and tj = nj = mj if j ∈ M2.

Here the point is that any of the three products
∏

j∈M1
p

tj
j ,

∏
j∈M2

p
tj
j and

∏
j∈M3

p
tj
j , is

uniquely determined by the other two (and by a′ of course). We now choose that set
among M1, M2 and M3 which has the largest number of elements. That set will have
at least k/3 elements. The other two sets together will have at most [2k/3] elements.
We allow the parameters tj , with j in the union of those two sets, to move freely.
Then the remaining tj will be uniquely determined, as was observed above. Now each
tj is bounded by log N. It follows that D(HS(X), N) will be bounded by (log N)[2k/3].
This in turn gives the lower bound stated above for the number of odd values of pS(n).
We have obtained the following results.

Theorem 7.1. Let b be a fixed positive integer and denote by S the set of square free
positive integers which are relatively prime to b. Then for N large in terms of b,

#{n ≤ N : pS(n) is odd } À (log N)[(ω(2b)+2)/3] . (7.5)

Theorem 7.2. Let b be a fixed positive integer and denote by S the set of square
free positive integers which are relatively prime to b. Then for each fixed c, with c <
(1/2)ω(2b)

∏
p|2b log p, and for N large enough in terms of b and c,

#{n ≤ N : pS(n) is even } ≥ cN

(log N)ω(2b)
. (7.6)
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