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In every case, we find that theorems on partitions correspond to generating
function identities. The partition-theoretic interpretations of (7.1.6) and
(7.1.7) are given in Section 7.3. If the reader wishes he may proceed by accepting
Lemmas 7.2—7.4 and then going directly to the partition theorems in
Section 7.3.

7.2 The Generating Functions

We shall consider, for |x| < |q|™, |q] < 1,

i ok Im1+n~inan(1 ~ xig?Yaxq"* V) (a™ M),
n=0 (q)n('xq")"lj ’

Jida;x;q) = H, (a;xq;q) — xqaH, ;_,(a;xq; q). (7.2.2)

H, (a;x;q) = (7.2.1)

We note that any value for a is admissible, even a = 0, since a"(a™!), =
(@ —1)Xa — q)---(a — q"" ') is merely a polynomial in a whose value at 0
is (_ l)nqn(n— 1)/2.

Very little can be said in way of motivation for this section. Actually
extensive work in the theory of basic hypergeometric series and partition
identities shows that “well-poised” basic hypergeometric series provide the
generating functions for numerous families of partition identities. The series
in (7.2.1) (once the infinite products have been factored out: “Y a,(4¢"x! =
(AE1Y 0, (A)F1) is an example of a well-poised series.

LEMMA 7.1
Hyda;x;9) — Hii-i(a; x5 9) = ' W iga(a; x59). (7.2.3)
Proof. Noting that
g™ "1 — x'g?™) — g (7] — xiTIgimh)
=q7 "1 - q") + x'7'g"" (1 - xq"),
we see that
Hy da;x;q) — Hy ;-4(a; x5 q)
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= xi—l[Hk,k—H»l(a; xq;q) — axqH,,-{a; xq; 9)]
=x""Wiaala; x5 q). u
LEMMA 7.2

Joa; x5 9) = Jyi-qa(a; x5 q) = (xq)' l("kk 1+10a; xq; q)

= aly-i1420a; xq; ). (7.2.4)
Proof.

Jodas x5 @) — Jy - q(a; x5 q)
= (Hy (a; xq; q) — Hy ;- ,(a; xq; q))
— axq(H, ;- ,(a; xq; q) — H, ;-2(a; xq; q))
= (x@) " iu-in1(a; xq; @) — a(xq) " _ii2(asxq5 ). A
In treating problems, there are numerous instances in which we require an

infinite product representation of a generating function. Such representations
are given in the following lemmas.
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LEMMA 7.3. For 1 €1 < k, |

J.{0;1;9) =

Proof. By (7.2.2)

LEMMA 74. For1 € i <€

Proof.

,i(* q

J.{0;1;q) = H, (0, q;

ql < 1,

ﬁ (1 -qgmn (7.2.5)

n#0, :tl(mod2k+l)

q)

= (q)a‘ol Z qkn’+(k—i+1)n(_ l)nqn(n-l)/Z(l _ q(z,,+1),-)

n=0

i
:8

n=1
n#0,+ i(mod

Jod—a 1,48 =

“L1;4Y) = H, (-

@53 (~
n=0

l)nq(2k+1)n(n+1)/2—in(1 —- q(2n+1)i)
(1 -g"»"" (byCorollary 29). MW
2k+1)
k. lq) <1,
I (1—-gq) " (7.2.6)
n=1

n# 2(mod4)
n#0,+(2i—1)mod 4k)

a7 4% 9+ qH, (- 97 ;4% 4%

g_‘q_;iqz)io { i (~ l)nqzkn+2kn7—(2i— 1)n
2

(l - ‘Iz'+4'") + q i (_ l)anIm+2I¢n2—(2|’-—3)n
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(— q; 4 )ao Z (- )nqun1+(2k+1—z.')n(1

(1 + q2n+1)

(2n+1)(21~1))
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( (49 )w )ao < n - 2kn2+(2k~ 21+ 1)n
Y (- 1q
(q z)ao n=-w

((qq Z))ao Z (- 4kn+4k)(1 — gHn+2i-1y

X (1 —- q4kn+4k-2(+1)

1

(q qz) (q q4) n (1 4k(n+1))(1 — q4kn+21—1)

X (1 —- q4h(n+l)—21+l)
@
= nm a-a" n
ni;:m:adA»)

n#0,+2(2i- 1)(mod 4k)
7.3 The Rogers-Ramanujan Identities and Gordon’s Generalization

In this section we shall utilize the analytic work in Section 7.2 to prove
the following theorem, which is due to B. Gordon.

THEOREM 7.5. Let B, (n) denote the number of partitions of n of the form
(byby---by), where b; — b;,,_, = 2, and at most i — 1 of the b; equal 1.
Let A, (n)denotethenumberof partitionsof n into parts #0, 1 i(mod 2k + 1).
Then A, (n) = B, (n) for all n.

Before we prove Theorem 7.5, it is appropriate to give center stage to its
two most celebrated corollaries, the Rogers~-Ramanujan identities (stated in
terms of partitions).

COROLLARY 7.6 (The first Rogers~-Ramanujan identity). The partitions of
an integer n in which the difference between any two parts is at least 2 are
equinumerous with the partitions of n into parts = 1 or 4 (modulo 5).

Proof. Take k = i = 2 in Theorem 7.5. H

COROLLARY 7.7 (The second Rogers-Ramanujan identity). The partitions
of an integer n in which each part exceeds 1 and the difference between any
two parts is at least 2 are equinumerous with the partitions of n into parts
= 2 or 3 (modulo 5).

Proof. Take k = i + 1 = 2 in Theorem 7.5. [ ]

Proof of Theorem 1.5. Let b, (m, n) denote the number of partitions
(b1by- - - by) of n with exactly m parts such that b; > b;, \, b; — b; 4 2 2,
and at most i — 1 of the b; equal 1. Thenfor1 € i < k
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1 if m=n=20
bi.dm. n) = 0 if m<0 or n<0 but (mn)#(0,0);
(1.3.1)
by o(m, n) = 0; (71.3.2)

forl €i<gk
b, {m,n) — by ;o y(m,n) = by iy (m ~i+ 1I,n—m). (1.3.3)

Equations (7.3.1) and (7.3.2) are obvious once we recall that the only partition
that is either of a nonpositive number or has a nonpositive number of parts
is the empty partition of 0.

Equation (7.3.3) requires careful attention: b, (m,n) — b, ;_,(m, n)
enumerates the number of partitions among those enumerated by b, (m, n)
that have exactly i — 1 appearances of 1. Let us transform this set of partitions
by deleting the i — 1 ones, and then subtracting 1 from each of the remaining
parts. The resulting partitions (b’ -b,,_;,,) have m — i + 1 parts; they
partition n — m, and the parts satisfy b,/ — b;,,_, > 2. Since originally 1
appeared i — | times and the total number appearances of ones and twos
could not exceed k — 1 (due to the difference condition), we see that originally
2 appeared at most (k — i + 1) — 1 times, and thus after the transformation 1
appears at most k — i + 1 times. The transformation described above
establishes a one-to-one correspondence between the partitions enumerated
by b, ,{m,n) — b, ;.. ,(m,n)and thoseenumerated by b, , _;, (m — i+ 1,n —m).
Hence (7.3.3) is established.

We now make a simple yet essential observation: the b, (m, n) (0 < i < k)
are uniquely determined by (7.3.1), (7.3.2), and (7.3.3). To see this, proceed
by a double mathematical induction first on n and then on i. Equation (7.3.1)
takes care of n £ 0, m <0, i > 0. Equation (7.3.2) handles all n when
i = 0. Equation (7.3.3) represents b, (m, n) as a two-term sum in which the
first term has a lower i index and the second a lower n index (since we can
assume m > 0).

Now let us consider

JodO;x59) =Y Y ¢ {m, n)x"q".

m=0 n=0

From the fact that for 1 < i < k
J,{0;0; q) = J, (0;x;0) =1,

we see that for 1 < i < k
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1 if m=n=20
e, m) = {0 if m<0 or n<0 but (m,n) #(0,0).
(1.3.4)
From the fact that /
Ji,00; k5 @) = Hy o(05 xq; @) = 0,
we see that
cy0(m, n) = 0. (1.3.5)

Finally, by comparing coefTicients of x™g" on both sides of (7.2.4) with a = 0,
we see that

cimn) — ¢ ioq(myn) =cpp_yp(m—i+ 1,n—m). (7.3.6)

So we see that the ¢, (m, n) also satisfy the system of equations (7.3.1)-
(7.3.3) that uniquely defines the b, (m, n). Therefore, b, (m, n) = ¢, (m, n)
for all m and n with 0 < i < k.

Hence, since Y 50 by, i(m, n) = B, (n), we see that

Z Bk,:(n)q" = Z Z bk,i(’", n)q"

nz0 m220 n20

J,d(0; 15 9)

MM =g bya2s)
n=1

n#0,% i(mod2k+1)

=Y A, {n)q"  (by Theorem 1.1, Eq. (1.2.3)).

nz0

Comparing coefficients of q” in the extremes of the string of equations above,
we see that 4, ,(n) = B, (n). [ |

Theorem 7.5 has an analytic counterpart, which we shall prove before
proceeding.

THEOREM 7.8. For 1 € i< k, k=2 2,|q| < 1

NyZEN 24+ N2 4NN 44N )
ry 1 = I a-g
nyng,Le k-1 20 (q)nl(q)nz. ’ '((I)nk_, n=1
n#0,ti(mod2k+ 1)

(1.3.7)

where N; = n; + i+ 4 g
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Proof. We shall prove that

NN+ N N 2ZEN 24 N2 NN+ N
2 k lq 1 2 k=1 i i+1 k-1

)= P et
J""{O’x,q)_nx."z..-gk-xzo (4)..,(‘1)..,’ ' '(q)nk_l

(1.3.8)

We obtain Eq. (7.3.7) from (7.3.8) by setting x = 1 and invoking (7.2.5).
Equation (7.3.8) itself follows from

x(k—l)nq(k—l)n’+(k—i)n

Jei05x59) = X Je-1.405 g™ q),  (1.3.9)

nzo0 (q)n
which may be seen immediately by induction on k once we observe that
Jexs10; x5 9) = J, . (0; x;9) (set i =k+ 1 in (7.2.4) and recall that
Ji.o(0; xq; q) = H, o0, xq%; q) = 0) and that J, ,(0; x;q) =1 (since by
(7.24)J,,,(0;x;59) = J; 1(0;xq59) = J,1(0,x¢*; 9) = - = J; ,(0; xq"; 9) -
-’1,1(0; 0;q) = 1).

To prove (7.3.9), we define

R {x;q) = ";) "(f:)_"‘]%;")" T Joo1.40; xg?"; ).
Then for 1 <1 <k,
R, {0; q) = R (x;0) =1 (7.3.10)
and
Ry o(x; q) = 0. (7.3.11)
Finally

R, {x;q) ~ Ry i-1(x;9)
= "ZO S P W— (Ji-1.40;x¢*; @) — q"J o1 ,1-1(0; xg*"; @)

x(k—l)nq(k—l)n1+(k—i)n )
= (-’k-l,i—l(O;xq ";q)

nzo0 (q)n
+ (g YT 05 X7 @) — ¢y i-1(0; xg7"; q))
x(k-l)nq(k-l)n1+(k—i)n , )
= £ - "(q)""/v(l ‘q)-’k-l,i—l(oixq "5 q)

(k~1)m2+(k+i~2)n

(k—1)n
TR CT) D Y
n20 (q)n

Ji-14-10;xg*"* 15 q)
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x(k-l)nq(k~1)n1+(3k—i—2)n ez,
Joo1,i- 105 xg*"*%; q)

— xk—1q2k~i—1 Z

nz0 (q)n

s l)nq(k—- 12+ (k+i~2)n

2n+1. )

+ (xq)'™! Z (Je-14-141(0; xg

nz0 (q)n
- (xq2n+2)k-i‘,h_l"_ 1(0; xqz"” ;q)

(k~1)n2+(3k—i~2)n

(k—1)n
k—1 2k—i—1 Z x q

=X q ‘,k—l.i~1(0;xq2"+2;q)

nz20 (q),.
+ (xq)i—l Z (xq)(k-l)nq(k—-1)n1+(k*(k-i+1))n‘,k~1,k_i+l(0; xq2n+1;q)
nz0
B o (k= D (k= 1)n2 +(3k~i~2)n
— xtTlgH ZO d @ Je-1,i-1(0; xg*"*%; q)
= (xq)' "Ry x—i41(x9, 9). (7.3.12)

Recalling that the coefficients in the expansion of J, ((0; x; q) were uniquely
determined by (7.3.4), (7.3.5), and (7.3.6), we conclude that since R, (x;q)
satisfies (7.3.10), (7.3.11), and (7.3.12), and thus its coefficients must satisfy
(7.3.4), (7.3.5), and (7.3.6), therefore R, (x; q) = J, {0; x; q) for 0 < i < k.
Thus we have (7.3.9) and with it Theorem 7.8. [ |

COROLLARY 7.9 (Eq. (7.1.6)).

e & a
Mt ta-oa -yt a—on—ga=g?t

— ﬁ(l . q5n+1)—1(l . q5n+4)—1.
n=0

Proof. Set k = i = 2 in Theorem 7.8. [ ]
CoROLLARY 7.10 (Eq. (7.1.7)).

2 6 12
q q q
L4+ N + o +
l—q (I —g)1- (1 -9 -4g*(1 -4
=10 = g**3)7'(1 — g**+ )"
n=0
Proof. Set k = 2, i = 1 in Theorem 7.8. [ |

7.4 The Gollnitz-Gordon Identities and Their Generalization

To appreciate the general area of partition identities such as the Rogers—
Ramanuian identities, we turn to results discovered independently in the 1960s



