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A COMBINATORIAL PROOF OF SCHUR'S 1926

PARTITION THEOREM

DAVID M. BRESSOUD

Abstract. One of the partition theorems published by I. J. Schur in 1926 is an

extension of the Rogers-Ramanujan identities to partitions with minimal difference

three. This theorem of Schur is proved here by establishing a one-to-one correspon-

dence between the two types of partitions counted.

Many classical partition identities state that for each positive integer « the

partitions of « with parts restricted to certain residue classes are equinumerous with

the partitions of « on which certain difference conditions are imposed. Most

prominent among these are Euler's identity: partitions into odd parts are equi-

numerous with partitions into distinct parts; and the Rogers-Ramanujan identities:

for r = 1 or 2, partitions into parts congruent to ± r (mod 5) are equinumerous

with partitions into parts with minimal difference two and smallest part greater

than or equal to r. In 1926, I. J. Schur discovered the partition theorem which is a

natural extension [2].

Schur's Theorem. Given any positive integer n, the partitions of « into parts

congruent to ± 1 (mod 6) are equinumerous with the partitions of n into parts with

minimal difference three and difference at least six between multiples of three.

Many proofs of Euler's identity exist, including several which explicitly exhibit

the correspondence between the two types of partitions counted (e.g., see

[1, §19.4]). For the Rogers-Ramanujan identities, no such correspondence has been

established. The purpose of this paper is to explicitly exhibit a one-to-one corre-

spondence between the two types of partitions counted in Schur's Theorem. What

makes the correspondence possible for Schur's identity and not for the Rogers-

Ramanujan identities is that Schur's identity is a special case of the following

partition theorem in which the parts restricted to certain residue classes are distinct.

Schur's Theorem (Full Generality). Given positive integers r and m such that

r < «j/2, let Crm(n) denote the numbers of partitions of « into distinct parts congruent

to ±r (mod m), and let Drm(n) denote the number of partitions of « into distinct parts

congruent to 0, ± r (mod m) with minimal difference m, minimal difference 2m

between multiples of m. Then Crm(n) = Drm(n) for all n.

The special case given above is r = 1, m = 3. Clearly, DX3(n) counts the

partitions of « with minimal difference three, minimal difference six between
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multiples of three. To see that C, 3(«) also counts the partitions of « into parts

congruent to ± 1 (mod 6), the reader is referred to the correspondence proof of

Euler's identity given in Hardy and Wright [1, §19.4]. Following the correspon-

dence given there, a one-to-one correspondence between odd parts with no multi-

ples of three (i.e. parts = ± 1 (mod 6)) and distinct parts with no multiples of three

(i.e. distinct parts = ± 1 (mod 3)) is easily established.

The correspondence given below will be for Schur's Theorem in its full general-

ity.

Definition. Given positive integers r, m, « and k such that r < m/2, « —

mk(k — l)/2 > rk, an r, m underlying partition for n and k, or an underlying

partition, is a partition of « — mk(k — l)/2 into exactly k parts, each of which is

congruent to 0, ± r (mod m), and such that multiples of m are distinct. (Example:

4, 6, 6, 11, 20, 40, 45 is a 1, 5 underlying partition for 237 and 7.)

Lemma 1. There is a one-to-one correspondence between r, m underlying partitions

for « and k and the partitions counted by Drm(n) which have exactly k parts.

Proof. Let ax < a2 < • • • < at be an /■, m underlying partition for « and k and,

for 1 < / < k, define b¡ = a¡ + m(i — 1). Then bx < b2 < • • ■ < bk is a partition

counted by Drm(n), and this correspondence is uniquely reversible. (Example:

4, 6, 6, 11, 20, 40, 45 corresponds to 4, 11, 16, 26, 40, 65, 75.)

Definition. An ordering of the parts in an r, m underlying partition for « and k,

say (ax, a2, . . ., ak), is called an Q-ordering if the following inequalities are satisfied

for any i and/, 1 < / </ < k.

(1) a¡ = a-j = 0 (mod m) => a, < ay,

(2)at

(3)

:aj ± r (mod m) => a¡ < a

a¡ = ±r (mod m)

Oj = 0 (mod m)
a, + mi <

Oj + mi

(4)

a, = 0 (mod m)

Oj= ±r (mod m)

a, + mi
< Oj + mi,

or equivalently,

a, + m(i - 1)
< a. + mi.

In this definition, [A}r (resp. \A~\) is the greatest integer less than or equal to A

(resp. least integer greater than or equal to A) and congruent to ± r (mod m).

Lemma 2. Every underlying partition has a unique ü-ordering.

b^ beProof. Given an r, m underlying partition for « and k, let bx < b2 < •

the parts congruent to  ± r (mod m) and let cx < c2 < • • • < ck, be the parts

divisible by m. If (ax, a2, . . ., ak) is an ñ-ordering of this partition, then a, equals
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either bx or c,. By properties (3) and (4) of an ß-ordering, if A, + m <

[(c, + m)/2\r, then ax = bx. If 6, + m > [(cx + m)/2\r, then ax = c,. Thus a, is

uniquely determined.

We proceed inductively, and assume that a„ a2, . . . , a,_, have been uniquely

determined, and that we have used the parts bx, . . . , bs_x, c„ .. . , c,_x. Thus a, is

either b, or ct. Again by properties (3) and (4), if b, + mj < [(c, + mj)/2]r, then

üj = bs. If bs + mj > [(c, + mj)/2]r, then a} = ct. Thus a, is uniquely determined,

and Lemma 2 is proved. (Example: The ß-ordering of 4,6,6, 11,20,40,45 is

4,20,6,6,40,45, 11.)

Definition. Given a partition, a, < a2 < • • • <ap, counted by Crm(ri), we

subdivide it, working from left to right, into blocks of at most two parts such that if

Oj + m > aJ+x and if (l)j = 1, or (2) a} > aj_x + m, or (3) a}_2 and aJ_l share a

block, then ap aj+x share a block. Otherwise, a, inhabits a block by itself. The order

of the partition is the number of such blocks. (Example: The partition

4,11,14,16,21,29,31,34,36,41 counted by C15(237) is blocked as follows

4|11, 14|16|21|29, 31|34, 36|41. It has order 7.)

Lemma 3. There is a one-to-one correspondence between r, m underlying partitions

for « and k and the partitions counted by Crm(ri) which have order k.

Proof. Let (ax, . . . , ak) be an r, m underlying partition for n and k with the

ß-ordering. Define a partition bx, . . . ,bk of « by setting b¡ = a¡ + m(i — 1) for

1 < / < k. Each A, which is divisible by m is replaced by the pair [A(/2Jr, |~ A(/2]r.

From property (3) of the ß-ordering, we have that if /' <j, bt= ± r (mod m) and

bj, = 0 (mod m), then b¡ + m < [A,/2jr. From property (4), we have that if /' <j,

A, = 0 (mod«i) and A, = ± r (mod m), then [A,/2]r < A,. Thus the resulting

partition is one counted by Crm(n) with order k. This procedure is uniquely

reversed if parts sharing the same block are first added together, and then m(i — 1)

is subtracted from the z'th part as read from the left. (Example:

4, 20, 6, 6, 40, 45, 11 becomes 4, 25, 16, 21, 60, 70, 41 which becomes

4|11, 14|16|21|29, 31|34, 36|41.)

Lemmas 1 and 3, taken together, give the desired correspondence which estab-

lishes Schur's Theorem.

I wish to thank Dr. K. A. Post for suggestions which were helpful in clarifying

this proof.
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