UNARE THETA-REIHEN ([1], S. 5859, [2], S. 348-349, [3], S. 50-51, [4], S.
10-12)

Es seien m > 0 und ¢ ganze Zahlen. Wir definieren die Jacobischen Theta-Reihen (z € C,
T € H)
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In Threm Vortrag sollen Sie die Transformationseigenschaften von ¥, , behandeln. Die Jacobi-
schen Theta-Reihen sind Beispiele von sogenannten Jacobiformen. Zeigen Sie (s. Anhang):
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Die Funktionen 1,,, liefern auch Beispiele von sogenannten undren Theta-Rethen, die eine
bedeutende Rolle in der Theorie der Modulformen spielen. Definieren Sie unére Theta-Reihen (s.
[4], S. 10-12). Fiithren Sie hierzu zunéchst gerade und ungerade Dirichlet-Charaktere x : Z — C
modulo N € N ein.

Zu einem Dirichlet-Charakter y definieren wir nun

0, () > onez X(n)e%erT falls x gerade ist,
T) = .
’ > nez X(n)ne*™™ 7 falls x ungerade ist.

Definieren Sie auch das Jacobisymbol (<) (s. [3], S. 51 und [4], S. 11) und
Lalls
o 1#‘ng 1 (mod 4),
1T)iT€a=3 (mod 4).
Geben Sie schliefilich ohne Beweis die folgenden Transformationsgesetze von 6, an.

Proposition 1.

(1) Es sei x ein gerader Dirichlet-Charakter modulo N und v = (25) € SLy(Z) mit 4N? | c.
Dann gilt:
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Oy <m) = (3) eq (e +d)? X(d)Oy (7).
(2) Es sei x ein ungerader Dirichlet-Charakter modulo N und v = (%) € SLy(Z) mit
4N? | c. Dann gilt:
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Beweis der Transformationseigenschaft der Theta-Reihen

Wir wollen folgende Transformationseigenschaft der Jacobischen Theta-Reihen
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Fiir eine Funktion f € S definieren wir die Fourier-Transformierte F(f) von f durch

beweisen:

Hierzu betrachten wir den Raum
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Wir verwenden ohne Bewelis:

Satz 2 (Poissonsche Summenformel). Fir f € S gilt: Y, ., f(k) =3, F(f)(n).
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Wir wenden Satz {§f auf die Funktionen
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Hierin wurde im dritten Schritt die Substitution
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vorgenommen. Die letzte Gleichheit folgt aus folgendem bekannten Integral, welches wir ohne
Beweis verwenden:

Satz 3. Es gilt [~ e % dx = /7.
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Aus Satz . folgt nun
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Zum Vergleich konnen Sie den Beweis einer dhnlichen Aussage in [1], Kapitel 5, §4.2 finden.
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