
UNÄRE THETA-REIHEN ([1], S. 58–59, [2], S. 348–349, [3], S. 50–51, [4], S.
10–12)

Es seien m > 0 und ` ganze Zahlen. Wir definieren die Jacobischen Theta-Reihen (z ∈ C,
τ ∈ H)

ϑm,`(τ, z) =
∑
r∈Z

r≡` (mod 2m)

e
πir2τ
2m e2πirz.

In Ihrem Vortrag sollen Sie die Transformationseigenschaften von ϑm,` behandeln. Die Jacobi-
schen Theta-Reihen sind Beispiele von sogenannten Jacobiformen. Zeigen Sie (s. Anhang):

ϑm,` (τ + 1, z) = e
πi`2

2m ϑm,` (τ, z) ,

ϑm,`

(
−1

τ
,
z

τ

)
=

√
τ

2mi
e

2πimz2

τ

∑
r (mod 2m)

e−
πi`r
m ϑm,r (τ, z) .

Die Funktionen ϑm,` liefern auch Beispiele von sogenannten unären Theta-Reihen, die eine
bedeutende Rolle in der Theorie der Modulformen spielen. Definieren Sie unäre Theta-Reihen (s.
[4], S. 10-12). Führen Sie hierzu zunächst gerade und ungerade Dirichlet-Charaktere χ : Z→ C
modulo N ∈ N ein.

Zu einem Dirichlet-Charakter χ definieren wir nun

θχ (τ) =

{∑
n∈Z χ(n)e2πin

2τ falls χ gerade ist,∑
n∈Z χ(n)ne2πin

2τ falls χ ungerade ist.

Definieren Sie auch das Jacobisymbol
(
c
d

)
(s. [3], S. 51 und [4], S. 11) und

εd =

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).

Geben Sie schließlich ohne Beweis die folgenden Transformationsgesetze von θχ an.

Proposition 1.

(1) Es sei χ ein gerader Dirichlet-Charakter modulo N und γ = ( a bc d ) ∈ SL2(Z) mit 4N2 | c.
Dann gilt:

θχ

(
aτ + b

cτ + d

)
=
( c
d

)
ε−1d (cτ + d)

1
2 χ(d)Θχ(τ).

(2) Es sei χ ein ungerader Dirichlet-Charakter modulo N und γ = ( a bc d ) ∈ SL2(Z) mit
4N2 | c. Dann gilt:

θχ

(
aτ + b

cτ + d

)
=

(
−4c

d

)
ε−3d (cτ + d)

3
2 χ(d)Θχ(τ).
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Beweis der Transformationseigenschaft der Theta-Reihen

Wir wollen folgende Transformationseigenschaft der Jacobischen Theta-Reihen

ϑm,`(τ, z) =
∑
k∈Z

e
πi(`+2mk)2τ

2m e2πi(`+2mk)z

beweisen:

ϑm,`

(
−1

τ
,
z

τ

)
=

√
τ

2mi
e

2πimz2

τ

∑
ν (mod 2m)

e−
πi`ν
m ϑm,ν (τ, z) .

Hierzu betrachten wir den Raum

S =

{
f : R→ C

∣∣∣∣ ∀α, β ∈ N : sup
x∈R

∣∣∣∣xαdβfdxβ
(x)

∣∣∣∣ <∞} .
Für eine Funktion f ∈ S definieren wir die Fourier-Transformierte F(f) von f durch

F(f)(y) =

∫ ∞
−∞

f(x)e2πixydx.

Wir verwenden ohne Beweis:

Satz 2 (Poissonsche Summenformel). Für f ∈ S gilt:
∑

k∈Z f(k) =
∑

n∈ZF(f)(n).

Wir wenden Satz (1) auf die Funktionen

fτ,z(x) = e
πi(`+2mx)2τ

2m e2πi(`+2mx)z

an und berechnen

F(fτ,z)(y) =

∫ ∞
−∞

e
πi(`+2mx)2τ

2m e2πiz(`+2mx)e2πixydx

= e2πi`(z+
`τ
4m)
∫ ∞
−∞

e2πimτ[x
2+( `τ+2mz+y

mτ )x] dx

= e2πi`(z+
`τ
4m)e−

πi(`τ+2mz+y)2

2mτ

∫ ∞
−∞

e−u
2 du√
−2πimτ

=
1√
−2imτ

e−
2πimz2

τ e−
πi(y2+2`τy+4zmy)

2mτ .

Hierin wurde im dritten Schritt die Substitution

u =
√
−2πimτ

(
x+

`τ + 2mz + y

2mτ

) (
du =

√
−2πimτ dx

)
vorgenommen. Die letzte Gleichheit folgt aus folgendem bekannten Integral, welches wir ohne
Beweis verwenden:

Satz 3. Es gilt
∫∞
−∞ e

−x2dx =
√
π.
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Aus Satz (1) folgt nun

ϑm,`

(
−1

τ
,
z

τ

)
=
∑
k∈Z

f− 1
τ
, z
τ
(k) =

∑
n∈Z

F
(
f− 1

τ
, z
τ

)
(n)

=

√
τ

2mi
e

2πimz2

τ

∑
n∈Z

e−
2πi`n
2m e

2πin2τ
4m e2πinz

=

√
τ

2mi
e

2πimz2

τ

∑
ν (mod 2m)

e−
πi`ν
m

∑
r∈Z

r≡ν (mod 2m)

e
πir2τ
2m e2πirz

=

√
τ

2mi
e

2πimz2

τ

∑
ν (mod 2m)

e−
πi`ν
m ϑm,ν (τ, z) .

Zum Vergleich können Sie den Beweis einer ähnlichen Aussage in [1], Kapitel 5, §4.2 finden.
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