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2. Die LAURENT-Entwicklung. Wie in 1.9(2) betrachtet man die EISENSTEIN-
Reihe

(1) G = Gr(Q) == Z w™*  fiir gerades k > 4.

0#we

Nach Proposition 1.9 sind die entsprechenden Reihen fiir ungerades £ > 3 gleich
Null. Man setzt schliefslich

v :=7(Q) :=min{|w|; 0 Aw € Q}
und erhalt den

Satz. Fiir alle z € C mit 0 < |z| < () gilt

(2) pz) =22+ Z(2n —1)Gop - 22 =22 4 3G, - 22+ 565G L

n=2

Beweis. Aufgrund von

1 d [ 1 .
(1_t)2zcﬁ<1_t>=7nz:1mt <1,

hat man fiir w # 0

1 1 1 1 Zm 1
e [ E <
(z —w)? w? ((1 — z/w)? ) M om0 2l <,

=2

und daher

(%) p(z) =27+ Y (Zmz:;) L 0< 2] <.

0#weN \m=2

m—1
Z 2] -3
- Sl < om (E) e

und aufgrund des Konvergenz-Lemma 1.9 ist die Reihe (*) in m und w absolut
konvergent. Nach Satz 1.8 darf man also umordnen und erhilt

Wegen

=22+ Zme“ 2N 0< 2] <y

m>2

Wegen Proposition 1.9 ist das aber (2). O

3. Die zweite Differentialgleichung. Die WEIERSTRASSsche - Funktion ge-
nigt der Differentialgleichung

(1) P =4p> — gap — g3.
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Dabei sind g und g3 definiert durch
(2) g2 .= g2(2) := 60 G4(Q) und g3 := g3(Q) := 140 G4(Q) .

Man nennt g, und g3 die WEIERSTRASS—Inwvarianten des Gitters 2. Wir ver-
wenden das LANDAU-Symbol und schreiben O(z2*) fiir eine Funktion f(z), die
|f(2)] < C - |z|* mit einem geeigneten C fiir z aus einer Umgebung von 0
erfiillt.

Beweis. Ausgehend von
o(2) = 272+ 3Gy - 2> + 5Gg - 2* + O(2°)

(vgl. 2(2)) berechnet man

0’(z) = 2+ 6G, + 10Gg - 22 + 0(2%) |

0 (2) = 2704+ 9G, - 272 4+ 156G + O(2) ,
e'(z) = —2-2346G4-2+20Gs- 23 +0(2"),
02(2) = 4-27%-24G,- 272 —80Gs + O(2) .

Daraus erhélt man mit (2)

(*) 0%(2) = 49°(2) + g20(2) + g5 = 0(2).

Hier gehort die linke Seite zu K(€2) und hat Pole hichstens dort, wo o oder p’
Pole hat. Nach (k) ist die linke Seite aber bei 0 und daher iiberall holomorph.
Satz 2.2A zeigt, dass diese Funktion konstant ist. Nach (x) wiederum ist diese
Konstante gleich Null. O

Differenziert man (1), so folgt das

Korollar A. Es gilt
20" =120 — gs.
Korollar B. Fir k € N gilt

™) € Z[Gy, Gs, 9] + Z[G4, G, 0l

Beweis. Dies ist fiir £ = 0 und 1 richtig. Wegen (2) folgt die Aussage fiir k = 2
aus Korollar A. Nun ergibt eine Induktion die Behauptung. O

Korollar C. Fir f € K(Q) sind quivalent:
(i) f ist holomorph in C\ Q.
(i) feClp]+Clp]-p"

Beweis. (i) = (ii): Subtrahiert man ap" bzw. ap" - /', @ € C, n € Ny,
geeignet, von f, so kann man nun die Ordnung der Pole in den Gitterpunkten
sukzessiv erniedrigen. Schlieflich beachte man noch resyf = 0 nach Satz 2.2B.

(il) = (i): Klar. O
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Korollar D. Fiir n > 4 gilt die Rekursionsformel

(3 (n=3)2n+1)2n—1)Ga =3+ Y (2p— 1)(2q — 1)G2, Gy

Beweis. Man triigt die LAURENT-Reihe 2(2) in " + 30 G4 = 6p* nach Korollar
A ein:

> (20— 1)(2n — 2)(2n — 3)Ga, 2™ 430G,

n>2
=12 (@0 —1)Gan 6D D (20— 1)(20 — 1)yl 7
nz2 p>2 ¢>2
Ein Koeffizientenvergleich ergibt bereits die Behauptung. O

Speziell erhélt man
(4) 7Gg=3G3, 11Gg = 5G4Gg , 143G 15 = 42G,Gg + 25G2 = 18G3 + 25G2
und das
Korollar E. Fiir k > 8 gilt
G € Q[Gy, Gg.

Korollar F. Sei Q ein Gitter in C mit zugehdrigen WEIERSTRASS—Invarianten,
go und g3. Jede in einem Gebiet G C C meromorphe, nicht-konstante Losung f
der Differentialgleichung

[P =41 = gof — g5

wird durch f(z) = p(z +w), z € G, mit geeignetem w € C gegeben. Ist f € M
eine solche Losung, dann ist Q) das Periodengitter von f. Das Gitter ) ist durch
92(Q) und g3(£2), also auch durch G4(2) und Gg(Q2) eindeutig bestimmit.

Beweis. Sei f eine in G meromorphe, nicht-konstante Losung der angegebe-
nen Differentialgleichung. Ist f in einer Kreisscheibe U C G um u holomorph
und f’ ungleich Null in U, dann gilt bei geeigneter Wahl einer Wurzel f' =
V413 — gof — g3. Nach Lemma 2.3B wiihlt man nun ein w € C mit p(w+u) =
f(u) und darf dariiber hinaus noch p’(w + u) = f/(u) annehmen, indem man
ggf. w durch —w—2u ersetzt. Die Funktionen f(z) und ¢(z) := p(z+w) geniigen
der gleichen Differentialgleichung 1. Ordnung und stimmen im Punkt « {iberein.
Dann folgt f(z) = g(z) fiir alle z € U aus dem Existenz- und Eindeutigkeits-
satz (vgl. W. WALTER [2000], 66). Der Identitédtssatz impliziert f(z) = g(z)
fiir alle z € G. Die fehlende Behauptung folgt nun aus der Tatsache, dass fiir
die p-Funktion nach dem Konstruktions-Satz 1 das Periodengitter gleich der
Polstellenmenge ist. a
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Bemerkung. An Stelle der Differentialgleichung (1) kann man bei gegebener
rationaler Funktion R allgemeiner nach Losungen w = f(z) der so genannten
binomischen Differentialgleichung

(5) w™ = R(z,w)
fiir gegebenes n € N fragen. Es gilt hier der

Satz von MALMQUIST und YOSIDA. Besitzt (5) eine auf C meromorphe
und transzendente Losung, dann ist R(z,w) ein Polynom in w von einem Grad
< 2n.

Einen Beweis findet man in E. HILLE, Ordinary differential equations in the
complex domain, J. Wiley, New York 1976, Theorem 4.6.4. Eine Klassifikation
der binomischen Differentialgleichungen beschreibt N. STEINMETZ, Math. Ann.
244, 263-274 (1979).

4. Ein Vergleich der Differentialgleichungen. Neben
(1) " = 49" — g2 — g5

war in Satz 2.3 die Differentialgleichung

(2) " = 4p — e1)(p — e2)(p — e3)
hergeleitet worden. Dabei waren ey, 5, e3 wie in 2.3(3) durch
(3) er =p(wr/2), k=1,2,3, w3 := wy + wo,

definiert, wenn wy,ws eine Basis von (2 ist. Da @ mehr als drei verschiedene
Werte annimmt, ergibt ein Vergleich fiir eine Unbestimmte X iiber C den

Satz. Es gilt
4X3 — o X — g3 = 4(X —e1)(X — e3)(X — e3).
Aus Korollar 2.4A folgt dann
Korollar A. Fir diiber C unabhdingige Unbestimmte X,Y gilt
X(Q) = C(X)[Y]/I(X,Y),

wenn I[(X,Y) das von Y? — 4X3 + g2 X + g3 in C(X)[Y] erzeugte Hauptideal
15t.

Ein Koeffizientenvergleich im Satz ergibt das
Korollar B. FEs gilt

(4) 0=-e;+ e+ e3,

(5) g2 = —4(erez + eze3 + ezeq),

(6) g3 = 4dejezes.



§3 Die WEIERSTRASSsche p-Funktion 41

Korollar C. Es gilt
93 - 27932, = 16(e1 — 62)2(62 - 63)2(63 - 61)2 # 0.
Beweis. Mit (4) und (5) erhélt man zunéchst
(*) go=2(ef +e3+¢3) baw. g3 =16(cle; + eje] + e3e).
Weiter ergeben (4) und (5) dann auch noch
2(e1 — e9)? = 2(e? +€3) — dejey = 29y — 23 + des(eg + ex) = 29y — 63,
also
(e1 — €2)? = go — 3e;.
Da die durch zyklische Vertauschung der eq,es, e3 entstehenden Beziehungen
ebenfalls giiltig sind, hat man

16(e1 — e2)*(ea — e3)*(e3 — e1)® = 16(g2 — 3¢7) (g2 — 3¢3) (g2 — 3¢3)
=16g5 — 3-16g5(e] + €3+ €3) +9- 16ga(efes + ese3 + ezel) — 27 - 16e3eses .

Wegen (*) und (6) ist die rechte Seite aber gleich g5 — 27¢3. Nach 2.3(6) sind
e1, ea, €3 paarweise verschieden. O

(7) A= A(Q) = g3 — 27g3

nennt man die Diskriminante und

(8) J=3(Q) == (12g2)°/A

die absolute Invariante des Gitters 2. Mit Korollar B und C folgt das

Korollar D. Es gilt
(€169 + e9e3 + €361)?

= —4.12%. .
J (1 — €2)%(es — e3)%(e3 — €1)?

Korollar E. Fir ) := €27

gilt
€1 — €3
(L—A+A%)3

N1 =N)2
Bemerkungen. a) Die Diskriminante A ist (bis auf einen Faktor) zugleich auch
die Diskriminante des Polynoms f(X) := 4X? — g, X — g3 im Sinne der Algebra
(vgl. S. LANG [1993], V, §10): Dort wird die Diskriminante des Polynoms f
(bis auf einen Faktor) als die Resultante von f und f’ erkldrt, also durch

j = 256 -

4 0 —g2 —g3 O
0 4 0 -9 —g
det |12 0 —go O 0 = —64A.
0 12 0 —g 0
0 0 12 0 —g
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Schwerpunkt legen auf

a) Holomorphie der Abbildungen oder
b) Birationalitdt der Abbildungen oder
c¢) Erhalt metrischer Eigenschaften

usw. Keine dieser Verallgemeinerungen wird hier besprochen. Auf einige der bei
Verallgemeinerungen wichtigen Aspekte wird jedoch in Abschnitten eingegan-
gen, die bei einer ersten Lektiire iiberschlagen werden konnen.

§1. Die obere Halbebene

In diesem Paragrafen wird die obere Halbebene H in C genauer untersucht. Die
Automorphismengruppe von H wird beschrieben. Dann wird die hyperbolische
Geometrie entwickelt.

1. Gebrochen lineare Transformationen. Wir schreiben 2 x 2 Matrizen

meist in der Form
a b
= (0 )

und benutzen wie iiblich fiir Determinante und Spur die Abkiirzungen

det M :==ad—bc, SpM :=a+d,

¢ [a c ¢ (d —b
M_<b d) bzw. M_(—c d)

fiir die transponierte bzw. adjungierte Matrix. Es bezeichne GL(2;C) die Grup-
pe der invertierbaren komplexen 2 x 2 Matrizen,

sowie

GL(2;C) :={M € Mat(2;C) ; det M # 0} .

Mit E wird die Einheitsmatrix abgekiirzt. Bekanntlich wird die inverse Matrix
zu M € GL(2;C) gegeben durch

1 1 d —b
M= M = :
det M ad — be <—C a )

Fir M € GL(2;C) ist unter offensichtlichen Voraussetzungen an 7 € C die
komplexe Zahl

ar +b
ct+d

(1) Mt =

wohldefiniert. Damit wird durch

(2) $pp 7 — Mt
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eine meromorphe Funktion auf C gegeben, die auch als gebrochen lineare Trans-
formation oder als MOBIUS Transformation bezeichnet wird. Fiir ¢ = 0 ist &),
eine ganze Funktion. Im Fall ¢ # 0 hat ®,; genau einen Pol und zwar von 1.

Ordnung bei 7 = —d/c.

Warnung: Die Schreibweise M7 darf nicht mit der skalaren Multiplikation 7M
von 7 mit M verwechselt werden! Wenn Missverstdndnisse zu befiirchten sind,
schreibt man auch M (1) anstelle von M.

Aus (1) folgert man fiir L, M € GL(2;C) und 0 # A € C wieder unter offen-
sichtlichen Voraussetzungen an 7 und 7"

(3) Er=7, dh &p=id,

(4) AM)T = M7, dh  ®uy =,

(5) (LM)r = LIM7), d.h. ®pa =y o by,
det M

(6) M7 — Mr = ¢ (T —=171)

(er' +d)(cT + d)
Schlieflich dividiert man (6) durch 7/ — 7 und erhélt fiir 7/ — 7

/ dMTt det M
@ = =
(7) M(T) d (CT+d)2

T

Als Umkehrung von (4) hat man die

Proposition. Fir L, M € GL(2;C) sind dquivalent:
(i) Mt = L7 gilt fiir wenigstens drei verschiedene T € C.
(ii) Es gibt 0 £ X € C mit M = \L.

Beweis. Wegen (5) und (3) ist M7 = L7 mit (L~'M)7 = 7 #quivalent. Man
kann daher in beiden Féllen ohne Einschrinkung L. = E annehmen. Da sich
Mt = 7 jetzt als

e’ +(d—a)T—b=0

schreibt, folgt die Behauptung. O

Jeder Kreis in C kann durch eine Gleichung der Form
(8) AT+ BT+ Br+C=0 mit ACER, A#0und BeC

beschrieben werden. Genauer gilt dann |B|*> > AC und der Mittelpunkt m bzw.
der Radius » > 0 werden gegeben durch

9) m=—B/A bzw. 1?=(|B]*>- AC)/A%

Umgekehrt beschreibt (8) im Fall A # 0 und |B|* > AC stets einen Kreis. Im
Fall A =0, B # 0 erhélt man durch (8) genau alle Geraden in C.
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Zur Untersuchung der Bilder von Geraden und Kreisen unter den gebrochen
linearen Transformationen (2) hat man z = M7, M € GL(2;C), zu betrachten.
Man trigt 7 = M~z in (8) ein, multipliziert die Nenner hoch und bekommt
wieder eine Gleichung der Form

azZ+fz+PB2z4+v=0 mit a,y€Rund g eC.
Bei richtiger Interpretation erhélt man den

Satz. Unter gebrochen linearen Transformationen geht die Menge der Kreise
und Geraden in C in sich iber.

Schlieflich seien noch die offensichtlichen Regeln fiir das Rechnen mit Unendlich
erklart. Ist M in der Standardform gegeben, so definiert man

(10) v oo, fallsec=0,
00 =
a/e, falls c#0.

Bemerkungen. a) Die Gleichungen (3), (5) und (10) besagen, dass durch (1)
eine Gruppenoperation von GL(2;C) auf P = CU {oo} gegeben wird. Nach der
Proposition gilt ®,; = &, fiir M, L € SL(2;C) nur fir M = +L. Vermoge (2)
erhilt man eine natiirliche Identifikation der Gruppe Aut P der biholomorphen
Selbstabbildungen von P mit der Gruppe PSL(2;C) := SL(2;C)/{£E} (vgl.
W. FISCHER, 1. LIEB [1992], Satz IX.3.1).

b) Ist f: U — C eine nicht-konstante, holomorphe Funktion auf einem Gebiet

U C C, so ist die SCHWARZ-Derivierte ¥ f von f definiert durch

- f/// 3 f// 2
(6)(2) ._7—§<7> el

Mit Hilfe von (7) verifiziert man nun X(®y, o f) = Xf fiir alle M € GL(2;C).
Ist also f eine Losung der Differentialgleichung X f = ¢, so ist auch ®py o f fiir
M € GL(2;C) eine Lisung.

2. Die obere Halbebene und der Einheitskreis. Wie bereits in Kapitel I
wird die obere Halbebene in C mit H bezeichnet, also

H:={reC;Im7>0}.
Dariiber hinaus bezeichnen wir den Einheitskreis mit E, also
E:={z€C; |z|<1}.
Ist G ein beliebiges Gebiet in C, so steht
Aut G :={p: G — G ; ¢ biholomorph}

fiir die Automorphismengruppe von G.
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Modulformen

Einleitung

1. Vorbemerkung. Wie die elliptischen Funktionen unter gewissen Selbstab-
bildungen von C, ndmlich den Translationen eines Gitters, in sich iibergehen, so
sind die Modulfunktionen unter geeigneten Selbstabbildungen der oberen Halb-
ebene H, namlich den Modulsubstitutionen

ar +b
ct+d

mit M—(Z Z

T— Mt = ) el:=S5L(2;7)
invariant. Das wichtigste Beispiel einer solchen Funktion, die iiberdies auf H
holomorph ist, ist die absolute Invariante j = j(), die wir bereits in 1.4.4 und
in II.LE.3 kennen gelernt haben. Es wird sich herausstellen, dass man mit j alle
Modulfunktionen beschreiben kann.

2. Mogliches Transformationsverhalten. Neben Funktionen, die unter den
Modulsubstitutionen invariant bleiben, sind aber auch Funktionen f : H — C
von Interesse, die unter den Modulsubstitutionen wenigstens noch ein iibersicht-
liches Verhalten aufweisen:

(1) f(MT) =~m(T)- f(r) fiiralle M el

Dabei sei yy/(7) ein elementarer Faktor, der noch genauer festgelegt werden
muss. Schreibt man (1) fiir M N anstelle von M und verwendet (MN)r =
M (NT), so erhdlt man (im Fall f(7) # 0) die Bedingung

(2) Yun(T) =Y (NT) - (7)) fir M,Nel und 71€H
an 7. Diese ,Cozykel-Bedingung® hat Ahnlichkeit mit der Kettenregel der Dif-
ferentiation. In der Tat erfiillen

_dMr

8 milr) = S = (er + )

und jede Potenz davon (2). Die auf diese Weise fiir jede gerade Zahl k entste-
hende Transformationsformel
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(4) f(M7)=(ct+ad)*- f(r) fir MerTl

ist dann charakteristisch fiir die so genannten Modulformen. Da die Gruppe der
Modulsubstitutionen geméf Korollar I1.2.1A durch die Abbildungen

(5) 7—74+1 und 7T+ —1/7

erzeugt wird, kann man (4) durch die beiden Bedingungen

(6) fr+1)=f(r) und f(=1/7)=7" f(7)
ersetzen.

In 1.4.1 hatten wir gesehen, dass die EISENSTEIN-Reihen G} Beispiele von sol-
chen Funktionen sind. Es soll noch ein weiteres Beispiel skizziert werden, das
ein zu (6) analoges Transformationsverhalten besitzt:

3. Die klassische Theta—Reihe. In seinen Briefen an GOLDBACH vom 4. 5.
1748 und 17. 8. 1750 behandelt .. EULER im Reellen bereits die Theta Reihe

(1)  JI(r):= Z e =142 Zq”2 mit ¢:=e™ und 7€ H.
neL n=1
Im Zusammenhang mit der Warmeleitungsgleichung tritt die Theta-Reihe dann
bei J. FOURIER in Théorie Analytique de la Chaleur (Paris 1822) auf (vgl. 1.6.7).
Im Nachlass von C.F. GAUSS ( Werke 111, 436 445) fand man eine Note etwa aus
dem Jahre 1808, in der eine etwas allgemeinere Reihe (nédmlich die in 1.6.7(1)
definierte JACOBIsche Theta-Reihe ¥(z; 7)) betrachtet und fiir sie bereits eine
Transformationsformel bewiesen wird. In den Fundamenta nova wird dann von

C.G.J. JACOBI (Ges. Werke I, 198-239) die allgemeine Reihe
Z (=1)"q" cos(2nz)

nez

unter dem Buchstaben © eingefiihrt und zur Darstellung der elliptischen Funk-
tionen verwendet. In der Bezeichnung von 1.6.7 ist ¥(7) gleich dem Nullwert

V(05 7).

Offenbar ist ¥(7) absolut und kompakt—gleichméfig konvergent auf H, so dass
¥ : H — C holomorph ist. Es gilt dariiber hinaus

(2) Hr+2)=9(r) firTeH

Die Bedeutung und das Interesse, das die Theta Reihe immer wieder gefunden
hat, liegen nun in der so genannten

Theta—Transformationsformel:

(3) 9 (=1/7)=/7/i- (1) fiir alle T€H.

Dabei ist der Zweig der Wurzel zu wéhlen, der fiir positive Argumente selbst
positiv ist.
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Beweis. Man wendet die so genannte PO1SSONsche Summationsformel auf J(iy),
y > 0, an oder was auf dasselbe hinauslauft entwickelt die modulo 1 peri-
odische, stetig differenzierbare Funktion

nez
in eine FOURIER Reihe und erhalt

Iiy) = @0) = am,

meLZ
1 0
Q= /SD(t) e ATt — /6”23/ e Amimt gt
0 o
Hier ist
Q= O(y) - ™™ mit B(y) = / e m(tvimivi)” gy = ;@-@n/ﬂ(l)-

Nach dem CAUCHYschen Integralsatz hiangt (3,,(1) = 3 nicht von m ab (vgl. R.
REMMERT, G. SCHUMACHER [2002], 12.4.3) und man erhalt

V(iy) = % -1 (%) fiir y > 0.

Setzt man nun y = 1, so folgt = 1 wegen ¥(iy) > 0. Die Transformationsfor-
mel ergibt sich nun durch analytische Fortsetzung. O

Einen elementaren Beweis der P0O1SSONschen Summationsformel findet man
7. B. bei M. KOECHER [1987|, 179-181.

Betrachtet man jetzt f(7) := ¥®(7), so erhiilt man in Analogie zu 2(6)
(4) fr+2)=f(r) und  f(=1/7) =7 f(7).

Damit kennt man das Transformationsverhalten von f = 9% unter der von
den Modulsubstitutionen 7 +— 7 4+ 2 und 7 — —1/7 erzeugten Gruppe von
Automorphismen von H. Mit der Theta Gruppe I'y in 11.3.4 folgt

f(M7) = (et +d)* f(r) fiiralle M €Ty.

Ein anderer ebenfalls durch I1.3.4 nahegelegter ~ Ansatz liefert eine Funkti-
on, bei der man das Transformationsverhalten unter allen Modulsubstitutionen
kennt: Man setzt

(5) g(7) ::%-192(7')~192(7'+1)-192(1—1/7')
und verifiziert mit (2) und (3)
gr+1)=i-g(r) und g(=1/7)=1i-73 g(7).

Die vierte Potenz von g ist daher eine Modulform im Sinne von 2(6) zu k = 12.
Man vergleiche Satz 4.5 d).
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§1. Die elementare Theorie

Ziel dieses Paragrafen ist es, die elementare Theorie modularer Funktionen zu
entwickeln und erste Strukturaussagen herzuleiten.
Es wird vereinbart, den Buchstaben M fiir 2 x 2 Matrizen zu reservieren und

stets M = (Z 2) 7zu schreiben. 7 aus der oberen Halbebene H wird immer in der

Form 7 = x 4 1y gegeben.

1. Modulare Funktionen. Zunéchst wird eine Operation von SL(2;R) auf
dem Raum der meromorphen Funktionen auf H erklért:

Sei dazu k € Z und f auf H meromorph. Dann existiert eine diskrete und relativ
abgeschlossene Teilmenge Dy von H, so dass f auf H\D; holomorph ist. Fiir
M € SL(2;R) erklirt man eine auf H meromorphe Funktion f|M = f|,M
durch

(1) (fIM)(7) == (et +d)F- f(M7) fiirx 7 €H\ Do

Auf die Angabe des Buchstabens k& € Z wird hier meist verzichtet. Zusammen
mit 11.1.1(5) ergibt eine Verifikation

(2) (f/IM)|N = f|(MN) fiir M,N e SL(2;R).

Damit definiert (M, f) — f|M eine Operation auf dem Raum der meromorphen
Funktionen auf H, die Strichoperator genannt wird.

Man nennt nun f modular vom Gewicht k, wenn gilt:
(M.1)  f ist auf H meromorph.
(M.2)  f|xM = f fiir alle M € T.

Offenbar bilden die modularen Funktionen vom Gewicht k einen Vektorraum
iber C. Trégt man M = —F in (M.2) ein, so erhélt man die

Proposition. Jede modulare Funktion von ungeradem Gewicht ist 0.

Es wird daher im Folgenden stets vorausgesetzt, dass k gerade ist. Wegen (2)
und Satz I1.2.1 kann man (M.2) ersetzen durch

(M.2%) fr+1)=f(r) und f(=1/7)=7F-f(7).
Schlieflich zeigt 11.1.1(7), dass man (1) auch in der Form

N\ k2
) dhne = (7)) s

schreiben kann.

2. Periodische Funktionen. Es bezeichne wieder

E:={z€C; |2| <1}
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die offene Einheitskreisscheibe in C. Bekanntlich definiert
H— E\ {0}, 7 2z := ¥,

eine surjektive und modulo 1 periodische holomorphe Funktion. Ist f auf H
meromorph mit Polstellenmenge D; und periodisch mit der Periode 1 (vgl.
[.1.2), dann gibt es bekanntlich (vgl. R. REMMERT, G. SCHUMACHER [2002],
Satz 12.3.2) eine auf E \ {0} meromorphe Funktion f mit

(1) f(r) = f(e*™) fir TeH\Dy.

[st nun umgekehrt f eine auf E\ {0} meromorphe Funktion, so ist die zugehdorige
Funktion f der Form (1) auf H meromorph und periodisch mit der Periode 1.
Man beachte hier, dass sich die Pole von f bei 0 hdufen kénnen! Um dies auszu-
schliefsen, sagt man, dass f bei oo hdchstens einen Pol hat, wenn fmeromorph
auf [E fortsetzbar ist.

Hat nun f in diesem Sinne bei oo hichstens einen Pol, dann ist 0 eine isolierte
Singularitit von f und es existiert eine LAURENT-Entwicklung von f um 0
mit endlichem Hauptteil (vgl. R. REMMERT, G. SCHUMACHER [2002], Satz
12.2.3)

2) fz) =3 agm)- 2

m>mg

die in einer punktierten Umgebung von 0 absolut und kompakt—gleichméfig
konvergiert. Wegen (1) ist dann f in eine FOURIER Reihe

(3) f(r) = ap(m)-mm

m>mo

entwickelbar, die bei geeignetem ~ > 0 fiir Im 7 > v absolut und kompakt—
gleichméfig konvergiert. Die Integralformel fiir die Koeffizienten der LAURENT-
Reihe (vgl. R. REMMERT, G. SCHUMACHER [2002], 12.1.3) iibersetzt sich dabei
in

w1

(4) cmm:/fm«%Wm

w

wobei die Integration fiir Im w > + z.B. ldngs der Strecke von w bis w + 1
auszufiihren ist.

Lemma. Fir eine auf H meromorphe und modulo 1 periodische Funktion f # 0
sind dquivalent:

(i) f hat bei oo héchstens einen Pol.
(ii) Es gibt v > 0 mit folgenden FEigenschaften:
(a) f ist auf dem Gebiet {T € H; Im 7 >~} holomorph.
(b) Es gibt ein mg € Z, so dass es zu jedem & > 0 ein C' gibt mit
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1f(T)] < C-e2mmoIm™  fiip glle T mit Im 7T >~ +e.
Dabei ist my das Minimum der m € Z mit ap(m) # 0.

Ist dies der Fall und ist f auf H holomorph, dann gilt (b) fir alle v > 0.

Beweis. Alles wird auf das Verhalten von f in einer Umgebung von 0 zuriick-
gespielt: Man hat fiir f genau dann ein LAURENT Reihe der Form (2), wenn
eine Abschitzung der Gestalt |f(2)] < C - |z gilt. O

Ist mo wie im Lemma gewdhlt, so sagt man in Ubereinstimmung mit dem Ver-
halten von f bei 0, dass f bei oo

einen Pol der Ordnung —mg hat, falls my < 0 gilt,
holomorph ist, falls mg > 0 gilt,
eine Nullstelle der Ordnung mqo hat, talls mg > 0 gilt.

Man setzt nun natiirlich

(5) orde. f := my.

3. Der Begriff der Modulform. Eine Funktion f heilkt Modulform vom Ge-
wicht k, wenn f modular vom Gewicht k ist und bei oo hochstens einen Pol
hat, wenn also gilt:

(M.1)  f ist auf H meromorph.

(M.2)  f|pxM = f fiir alle M €T

(M.3)  f hat bei oo hochstens einen Pol.

Wegen Lemma 2 kann hier (M.3) ersetzt werden durch

(M.3*) f besitzt eine FOURIER-Entwicklung der Form

f(r)= Y ag(m)- e,

m>mg

die bei geeignetem v > 0 fiir Im 7 > 7 absolut und kompakt gleichméifig
konvergiert.

Da mit f und g auch af + 89 , a, 8 € C, und f - g hiochstens einen Pol bei
oo haben, ergibt ein Blick auf 1(1), dass die Modulformen vom Gewicht k einen
Vektorraum Vy, diber C bilden. Es gilt aukerdem

(1) V.-V, C Vk—i—f filr k),g €.

Wegen Proposition 1 hat man natiirlich

(2) Vi = {0} fiir ungerades k.
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Schliefslich ist
(3) % e V_; fir O 7£ f eV .

Eine Modulform vom Gewicht 0 heift eine Modulfunktion. Wegen (1) und (3)
ist die Menge

(4) K :=V,

aller Modulfunktionen ein Korper, der die konstanten Funktionen und alle Quo-
tienten von Modulformen desselben Gewichts enthélt.

Bemerkungen. a) Der Name Modulfunktion stammt von R. DEDEKIND (Ges.
math. Werke I, 159-172). Eine Modulfunktion tritt zunéchst als Modul bei el-
liptischen Integralen in der LEGENDREschen Normalform auf. Es handelt sich
dabei allerdings um eine Funktion, die nicht zur Modulgruppe I', sondern zur
Hauptkongruenzgruppe I'[2] gehort (vgl. I.E.2, Korollar 1.3.4E, Aufgabe 1.4.7).
Modulformen treten systematisch zuerst bei WEIERSTRASS in seinen Vorlesun-
gen iiber elliptische Funktionen als die Invarianten g, und g3 bzw. als A auf
(vgl. 1.4.1), nachdem diese vorher von G. EISENSTEIN betrachtet wurden (vgl.
1.3.7).

Eigentliche Begriinder der Theorie der Modulfunktionen sind F. KLEIN und H.
POINCARE. Die Hauptwerke von POINCARE zu diesem Thema findet man in den
ersten Bénden der Acta Mathematica (ndmlich in Band 1, 3, 4, 5) und in seinen
(Euvres II. Wichtige Arbeiten von KLEIN findet man in seinen Ges. math. Ab-
handlungen III. Die Theorie wurde dann zunéchst von R. FRICKE fortgefiihrt,
von dem der ausfiihrliche Ubersichtsartikel I1.B4 Automorphe Funktionen in der
Enzyklopadie der Math. Wissenschaften stammt.

b) Auf R. DEDEKIND geht die abkiirzende Schreibweise 17 := ™7 zuriick (Ges.
math. Werke I, 174-201), die auch spiater manchmal verwendet wird, sich aber
allgemein nicht durchgesetzt hat.

4. Ganze Modulformen. Eine Modulform f vom Gewicht k& heifit eine ganze
Modulform vom Gewicht k, wenn f auf H holomorph ist und wenn f bei co
keinen Pol hat. Damit ist f genau dann eine ganze Modulform vom Gewicht k&,
wenn gilt:

(M.1")  f:H — C ist holomorph.

(M.2")  f|xM = f fiir alle M €T.

(M.3%)  fist fiir alle 7 € H mit Im 7 > v, v > 0, beschrénkt.
Wegen Lemma 2 kann man hier (M.3’) ersetzen durch

(M.3”)  f besitzt eine FOURIER Entwicklung der Form

f(r) =) ag(m)- e,

m>0
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die fiir v > 0 auf der Menge {7 € H ; Im 7 > ~} absolut gleichméfig konver-
giert.

Die Menge My, der ganzen Modulformen von Gewicht k ist offenbar ein Unter-
raum des Vektorraums V.

Eine ganze Modulform f heifst eine Spitzenform (englisch: cusp form), wenn f
bei oo eine Nullstelle hat, wenn also a;(0) = 0 gilt. Der Vektorraum der Spit-
zenformen vom Gewicht k& wird mit S, bezeichnet. Man hat offenbar

S, M, CV, firalle k € Z.
Aus (M.3”) folgt sofort
(1) ay(0) = lim f(iy) fiir f € M.
Im Hinblick auf 3(1) erhdlt man dann
(2) My, - My C Mgy, Sip-My CSiyp fir k0 eZ.
Wegen seiner Bedeutung wiederholen wir einen Spezialfall von Lemma 2 als
Lemma. Ist f € My und v > 0, so gilt

F(1) = ag(0) = O (e77)

auf der Menge {T € H; Im 7 > ~}.

Im weiteren Verlauf werden ausschlieflich der Korper K = Vy der Modulfunk-
tionen und die Vektorrdume M, der ganzen Modulformen vom Gewicht k stu-
diert.

5. Negatives Gewicht. Fiir f € M, wird f : H — R erkliirt durch
(1) f(r):=(Im7)*? - |f(7)], 7 € H.
Aus I1.1.3(1) und 1(1) erhélt man offenbar

(2) f(Mrt)=f(r) fiiralle M €T,

so dass f eine unter I invariante Funktion ist. Die genaue Kenntnis des exakten
Fundamentalbereiches F aus 11.2.2 fiihrt speziell zu der

Proposition. Ist ¢ : H — R fiir Im 7 > %\/g beschrinkt und gilt
o(MT) = (T) fir alle M €T,

dann ist ¢ auf H beschrinkt.

Beweis. Nach 11.2.2(3) ist ¢ speziell im Fundamentalbereich F beschrénkt. Nun
kann man Satz I1.2.2a anwenden und sieht, dass ¢ auf H beschrénkt ist. ]

Als erstes Strukturergebnis erhalten wir den
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Satz. Es gilt M, = {0} fir k < 0.

Beweis. Nach (M.37) ist f speziell fiir alle 7 mit Im 7 > 11/3 beschriinkt. Da k
negativ ist, gilt dies dann auch fiir f. Nun kann man die Proposition auf ¢ = f
anwenden und sieht, dass f auf H beschrankt ist.

Man entwickelt f in eine FOURIER—Reihe und erhilt fiir die FOURIER—Koeffizi-
enten geméf 2(4)
1
af(m) = e*™my. /f(x +iy) - e dy m > 0.
0
Mit (1) folgt
1

lap(m)| <y " 2’"’”’/ (x +iy)de < C -y 2. 2™
0

mit einer von y unabhingigen Konstanten C. Da die linke Seite ebenfalls nicht
von y abhéngt, kann man den Limes y — 0 bilden und erhélt ay(m) = 0 fiir
alle m > 0, also f =0. O

6. Das Wachstum der FouRriER—Koeffizienten. Fiir f € M}, wird f wie in
5(1) erklért.

Satz. Fir k >0 und f € My gilt:
a) f ist genau dann auf H beschrinkt, wenn f € Sy gilt. In diesem Fall existiert
ein w € H mit der Eigenschaft

F(r) < f(w) fir alle 7 € H.
b) Ist f € S, so gilt
ayp(m) =0(m*?)  fir alle m € N.

Beweis. a) Ist f eine Spitzenform, so ist f wegen Lemma 4 fiir Im 7 > %\/g
beschriankt. Die Behauptung folgt nun aus Proposition 5. Ist umgekehrt f be-
schréinkt, so sind wegen Lemma 4 auch a;(0) - y*/2 in F beschriinkt. Aus k > 0
folgt o (0) = 0, also f € S. Die Existenz von w ergibt sich aus lim,, ., f(7) = 0
nach Lemma 4.

b) Man entwickelt f in eine FOURIER—Reihe und wie im Beweis von Satz 5 folgt

lap(m)| < C-y=F2. 2™ fiir y > 0.

Da die linke Seite nicht von y abhéngt, darf man rechts y = 1/m , m > 0,
eintragen und erhélt

jag(m)] < C - e -m*/?,

also die Behauptung. a
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Aufgaben. Es bezeichne A(H) die Menge aller modulo 1 periodischen, auf H U {oo} holo-
morphen Funktionen f: H — C mit zugehoriger FOURIER-Reihe der Form

f(r) = i ag(m)-e2™mT 1 e H,

m=0

gemifl Lemma 2. A(H) ist offenbar eine C Algebra, die alle ganzen Modulformen enthilt.
Es bezeichne B(H) die Teilmenge derjenigen f € A(H), zu denen es ein ¢ > 0 gibt mit der
Eigenschaft

ar(m)=0(mb) fiir m>1.
Fir f € B(H) setzt man
K(f):=inf{{>0; af(m)=0(m") firm>1}.

1) B(H) ist eine Unteralgebra von A(H). Speziell gilt fiir f, g € B(H):
a) n(f +g) < max{n(f), r(g)}.
b) w(f - g) < A(f) + K(g) + 1.
2) Ist f € A(H) und (Im 7)% - f(7) fiir ein x > 0 auf H beschrankt, dann gehort f zu B(H)
mit k(f) < k.
3) Ist f € Sk, so gehort f zu B(H) mit x(f) < k/2.
4) Ist f € B(H), so konvergiert die DIRICHLET—Reihe

Dy(s) := Zaf(m) -m~?

fiir s € C mit Re (s) > x(f) + 1 absolut.

5) Die Funktion f(7) = 9(27) (vgl. E.3) gehort zu B(H) mit x(f) = 0 und Dy(s) = 2¢(2s).
6) B(H) ist eine echte Unteralgebra von A(H).

7) 7Zu f € My, definiert man eine Funktion

ffH—C, 7+— f(-7).

Dann gilt f* € My und f** = f. Die Fourier—Koeffizienten von f sind genau dann reell, wenn
f* = f. Die FOuriER Koeflizienten von f sind genau dann rein imaginir, wenn f* = —f.
8) M, besitzt eine Basis aus ganzen Modulformen mit reellen FOURIER-Koeffizienten.

9) f € My, ist genau dann eine Spitzenform, wenn es zu jedem v > 0 positive Konstanten o
und /3 gibt, so dass

f(D)| <a-ePY firalle 7€H mit y> 1.
10) Sei f € My, und p = (1 +iV/3). Es gilt f(i) = 0, falls k # 0 (mod 4), und f(p) =0, falls
k Z£ 0 (mod 6).
11) Fiir f € Sk und r € Q gilt
lim f(r +iy) = 0.
yl0
Fiir f € My, f ¢ Sk, k>0 und r € Q gilt

li + iy)| = oo.
ylyollf(r iy)| = oo
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§2. Beispiele

1. Die E1sENSTEIN—Reihen. Die klassischen Beispiele fiir ganze Modulformen
sind die EISENSTEIN-Reihen

(1) Gr(7) == Z, (m7 4+n)"" fir k>3 ganz

m,n

geméf 1.1.9(2) bzw. 1.3.2(1). Dabei soll der Strich am Summenzeichen bedeuten,
dass die Summe iiber alle Paare (m,n) € Z x Z mit (m,n) # (0,0) zu erstrecken
ist. Obwohl die wesentlichen Eigenschaften der G} bereits in 1.§4 hergeleitet
wurden, sollen hier einige davon mit anderen Beweisen neu begriindet werden:

Proposition. Zu jedem Kompaktum X in H gibt es positive Konstanten v und
0 mit

v lmi4n| <|mt+n| <0-|mi+n|

fiir alle m,n € R und alle 7 € K.

Beweis. Aus Homogenitétsgriinden darf man m? +n? = 1, also |mi +n| = 1
voraussetzen. Dann nimmt aber die stetige Funktion

(1, m, n) — |m7+ n|

auf der kompakten Menge X x {(m,n) € R xR ; m?*+n* = 1} ein Minimum ~
und ein Maximum ¢ an. Da Im 7 fiir 7 € K durch eine positive Konstante nach
unten beschrankt ist, gilt v > 0. O

In Analogie zu I.1.9 erhdlt man nun das

Konvergenz—Lemma. Firk € Z, k > 3 ist G}, absolut und kompakt—gleichmdfsig
konvergent. Damit ist Gy eine holomorphe Funktion auf H.

Beweis. Nach der Proposition braucht nur die Konvergenz von
!
Z (m? +n?)~  fiir a>1
m,n

bewiesen zu werden. Den wohl einfachsten Beweis hierfiir findet man bereits bei
WEIERSTRASS (Math. Werke V, 117): Mit Hilfe der Ungleichung m?+n? > |mn|
erhalt man

Z (m? +n?)"* < 42 mT + 4( Z mC“) < 4(¢(2a) + %)) < 00

E m>1 m>1

fir o> 1 und jede endliche Teilmenge E von (Z x Z) \ {(0,0)}. O
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Eine einfache Konsequenz (vgl. 1.4.2(5)) ist das folgende Transformationsver-
halten der EISENSTEIN-Reihen.

Transformations—Lemma. Fiir k € Z, k > 3 und alle M € T gilt G| M =
Gy, d. h.

(2) Ge(MT) = (et +d)* - Gi(1) , T € HL
Beweis. Wegen

(m-Mt+mn)-(ct+d)=m'T+n" mit (m',n)=(m,n) M
durchliuft nach dem Aquivalenz Satz 1.1.5 mit (m, n) auch (m/,n’) alle Paare
ganzer Zahlen genau einmal. O
Mit M = —FE erhdlt man das
Korollar A. Es gilt G = 0 fiir ungerades k > 3.

Aus Kapitel I iibernehmen wir den Satz 4.2, dessen Beweis keinen direkten
Bezug zur Theorie der elliptischen Funktionen bendétigte: Fiir gerades & > 4
gilt

(3) Gu(r) = 20(0) + 2

Es ist zweckméfig, neben der Reihe GG}, auch die normierte EISENSTEIN Reihe

(27.”)]{: N TimT
e
T om=1

1
= — > : ]
(4) G, RO Gy, k>4 gerade,

zu betrachten. Da jedes Paar ganzer Zahlen (m,n) € (Z x Z) \ {(0,0)} sich
eindeutig in der Form (m,n) = (tu,tv) mit ¢t € N und teilerfremden pu,v € Z
schreiben ldsst, hat man auch

(47 Gi(r)=13" Z (m7+n)7%, k> 4 gerade.
99T (m,n)=1

Wir wollen eine weitere Darstellung von G}, herleiten. Dazu sei

(5) I ={T";neZ}={M el ; c=0}.

oM : Ty \ I bedeutet, dass M ein Vertretersystem V der Rechtsnebenklassen
von I nach I'y, durchliuft, also

UpevlM =T und T M #T N fiir M, N € V mit M # N.

Im Hinblick auf das Ergidnzungs—Lemma I1.2.1 folgt

6) Gi(r) = Z pM(T) = Z (et +d)~*  fiir gerades k > 4.

M:Too\T M:Too\T
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Man verwendet nun die EULERsche Formel (vgl. R. REMMERT, G. SCHUMA-
CHER [2002], Satz 11.3.1)

(27i)*
k!

wobei die ersten BERNOULLI-Zahlen By, gegeben sind durch

(7) 2¢(k) = — - By, k> 2 gerade,

k 2 4 6 8 10 12 14

1 1 1 1 5 691 7
(8) Be | 6§ | =3 = | 3| o | 2m0| s
2k
—5 —24 | 240 | =504 | 480 | —264 % —24
Aus (3) erhélt man dann
N=1——" _ . erade.
L B m:1ak1m e , k>4 ger
Das bedeutet insbesondere
(10) Gi(r) = 14240+ Y o3(m) - €™,
m=1
(11) Gy(r) =1-504- Y o5(m) - e2mm.
m=1

Nach diesen Vorbereitungen zeigt sich, dass die Vektorrdume der ganzen Mo-
dulformen fiir gerades Gewicht &£ > 4 nicht nur aus der Null bestehen:

Satz. Fir gerades k > 4 gilt:
a) G € M.
b) My =C- -G, ® Sy =C-G; @Sy

Beweis. a) Man verwendet das Konvergenz-Lemmma sowie (2) und (3).
b) Fiir f € My, ist f — a(0) - G}, eine Spitzenform. a
Korollar B. Fiir gerades k > 4 und f € My, gilt

(12) ap(m) = —as(0) - %]z cop1(m) + 0 (m*?), meN.

Beweis. Man verwendet Teil b) des Satzes, (9) und Teil b) von Satz 1.6. O

Wegen
m" < o,(m) = Zd’" = m’”Zd*” <{(r)-m"
dlm d|

fiir r > 1 folgt speziell
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(13) ar(m)=0(mF) firalle fe€M,, k>4 gerade,
und diese Abschitzung kann fiir f ¢ Sy nicht verbessert werden.
Bei den E1SENSTEIN-Reihen treten gewisse Zwangsnullstellen auf:

Nullstellen-Lemma. a) Es gilt Gi(i) = 0 fiir k # 0 (mod 4), speziell hat man
G(i) =
b) Es gilt Gi,(p) = 0 fiir k # 0(mod 6), speziell G4(p) =0, p:= (1 +1iV3).

Beweis. Es gilt i(Zi +Z) = Zi+ Z und p(Zp + Z) = Zp + Z wegen p*> = p — 1.
Aufgrund der absoluten Konvergenz der Reihen (1) hat man daher Gi(i) =
i~% . Gx(i) und analog auch Gy(p) = p~% - Gy(p)- O

Bemerkung. Man kann die Lage der Nullstellen etwas genauer beschreiben.
Nach einem Resultat von F.K.C. RANKIN und H.P.F. SWINNERTON-DYER
(Bull. Lond. Math. Soc. 2, 169 170 (1970)) liegen fiir gerades k > 2 die Null-
stellen von GG, in F auf dem Einheitskreis. Man vergleiche dazu auch B. SCHOE-
NEBERG [1974], TI1.1.6.

2. Die Diskriminante A wurde bereits in 1.3.4(7) eingefiihrt und in 1.4.3
ausfiithrlicher behandelt. Nach 1.4.3(1) ist sie durch

(1) A = (60G4)? — 27(140Gs)?

definiert. Das Transformations-Lemma 1 ergibt sofort

(2) A(MT) = (ct +d)**- A(r) fiiralle 7€H und MeTl

und der Satz 1.4.3 zeigt, dass A eine FOURIER-Entwicklung der Form

G Alr ZT gmimr o H,

besitzt, bei der alle Koeffizienten 7(m) ganze Zahlen sind und 7(1) = 1 gilt.
Eine kurze Tabelle der 7(m) hatten wir in 1.4.3(6) notiert.

Aus (1), (2) und (3) erhélt man den wichtigen

Satz. Es gilt A € Sy».

Als wichtigste Anwendung der Theorie der elliptischen Funktionen vermerken
wir die Nullstellenfreiheit von A nach Korollar I.3.4C sowie die Produktentwick-
lung nach 1.6.5(1). Wir werden diese Tatsachen hier (noch) nicht verwenden,
sondern in Satz 4.1 und Korollar 6.2 neue Beweise geben.

Auch hier ist es zweckméfig, eine normierte Version gesondert zu bezeichnen.
Im Hinblick auf (3) definiert man die normierte Diskriminante durch

(4) A*(7) = (27) "2 A(r ZT 2™t e H.
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Mit 1(4), 1(7) und 1(8) verifiziert man jetzt miihelos
1

1728
Multipliziert man die FOURIER-Reihen in (5) formal aus, so erscheinen die Koef-
fizienten in evidenter Weise als ganze Zahlen. Man wird fragen, ob eine ,yerniinf-
tige“ einfache arithmetische Beschreibung der Koeffizienten 7(m) existiert. Bis
heute ist eine solche jedoch nicht gefunden worden. Nach ausfiihrlichen nume-
rischen Berechnungen (iiber m = 10' hinaus) hat D.H. LEHMER (Duke Math.
J. 14, 429-433 (1947)) die Vermutung ausgesprochen, dass 7(m) # 0 fiir alle m
gilt. Bisher ist kein Beweis dieser LEHMERSchen Vermutung bekannt.

(5) A (GP = G&).

3. Srinivasa RAMANUJAN (1887 1920) wurde in einer siidindischen Klein-
stadt in der Nidhe von Madras geboren. Nach G.H. HARDY war er nur ,halb—
gebildet” und blieb ohne bessere Ausbildung. Seine wissenschaftliche Entwick-
lung war aber so einzigartig, dass sie sich nicht mit der eines anderen Mathe-
matikers vergleichen ldasst: An Hand von einfachen Lehrbiichern lernte er die
Grundlagen der Analysis. Um 1903 begann er, seine Entdeckungen (ohne Be-
weis) in seinen Notebooks aufzuschreiben, bis etwa 1910 lebte er vollig auf sich
allein gestellt nur fiir seine Mathematik.

In einem Brief an G.H. HARDY teilte er diesem einige seiner Ergebnisse mit.
Nach und nach iibermittelte er HARDY etwa 120 Theoreme iiber meist forma-
le Tdentitéten und (teilweise falsche oder unrichtig formulierte) Aussagen zur
Primzahltheorie. Ein Teil der von ihm angegebenen Formeln war kompliziert
und erschien tiefliegend. Auf Einladung von HARDY besuchte RAMANUJAN
von 1914 bis 1917 Cambridge und eine iiberaus fruchtbare Zusammenarbeit
zwischen beiden begann. RAMANUJAN starb im Alter von 32 Jahren in seiner
Heimatstadt.

Aufgrund numerischer Rechnungen (er gibt die Werte von 7(m) fiir m < 30 an)
vermutete RAMANUJAN, dass die zahlentheoretische Funktion 7(m) multiplika-
tiv ist, d. h., dass

7(mn) = 7(m) - 7(n) fiir alle teilerfremden m,n € N

gilt. Dies wurde kurz darauf von L.J. MORDELL (Proc. Cambridge Phil. Soc.
19, 117 124 (1920)) bewiesen. Wir geben einen auf E. HECKE zuriickgehenden
Beweis in Satz [V.1.4.

RAMANUJAN entdeckte bzw. vermutete eine ganze Reihe von Kongruenz Eigen-
schaften der Koeffizienten 7(m). So gilt z. B.

7(m) = o11(m) (mod 691) fiir alle m € N

(vgl. 4.2). Er vermutete Kongruenzen der Form

7(Tm+3) =0 (mod7) und 7(23m + k) =0 (mod23) fiir meN,
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wenn k ein so genannter quadratischer Nichtrest modulo 23 ist.

Die spektakuldrste von RAMANUJAN ausgesprochene Vermutung tragt noch
heute seinen Namen, wenn sie inzwischen auch von P. DELIGNE (Publ. Math.
THES 43, 273 307 (1974)) als ein Spezialfall einer wesentlich allgemeineren Aus-

sage bewiesen wurde:
RAMANUJAN—Vermutung: Fir alle Primzahlen p gilt
m(p)| < 2p"2.

Die zahlentheoretische Funktion 7(m) wird oft RAMANUJANSsche Tau-Funktion
genannt.

Literatur: G. ANDREWS et al: Ramanujan revisited. Academic Press, Boston
1988. B. C. BERNDT: Ramanujan’s notebooks I ~IV. Springer-Verlag, New York
1985-1994. B. C. BERNDT, Math. Intel. 10, No. 3, 24-29 (1988). G.H. HARDY:
Ramanujan. 3. Aufl., Chelsea, New York 1978. K. G. RAMANATHAN, J. Indian
Math. Soc. 51, 1 25 (1987). S. RAMANUJAN: Collected Papers. Chelsea, New
York 1962. S. RAMANUJAN: Notebook [ und II, Tata Institute of Fundamental
Research, Bombay 1957.

4. Die absolute Invariante j ist geméf 1.3.4(8) bzw. 1.4.4(1) definiert als
Quotient zweier ganzer Modulformen vom Gewicht 12:

(1) = (720 G4)*/A = G733 /A",

J ist sicherlich meromorph (und aus der Nullstellenfreiheit von A ergibt sich
sogar die Holomorphie) auf H. Das Transformations-Lemma 1 zusammen mit
2(2) fiihrt zu

(2) J(M7)=j(r) fiir alle M € I" und 7 € H.
Wie in Satz 1.4.4A ausgefiihrt wurde, erhélt man aus (1) eine FOURIER Ent-

wicklung der Form

(3) ](7_> _ e—27ri7' + Z]m . 6271”im7' T c H’

m=0

mit j,, € Z. Zusammengefasst bekommt man den
Satz. j ist eine Modulfunktion, d. h., es gilt
j e K=YV,
Das Nullstellen-Lemma 1 ergibt noch
(4) j(i) =123 = 1728 , j(p) = 0.

Nach Satz 1.6.6 sind die j,,, sogar positive ganze Zahlen. Wir geben eine kurze
Tabelle:



