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THETA FUNCTIONS
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shows the equality of the Mellin transforms of f(x) and the function 4/7e=2,
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Alternatively, we can use this formula to derive the duplication formula.

Comments and References

For the duplication formula

result is due to Legendre. The general result
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Let us now pursue an apparently tangential path. We wish to consider one of
the most fascinating and glamorous functions of analysis, the Riemann zeta
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function. The connection between this function and theta functions was extens-
ively discussed by Riemann.

‘This function, {(s), is defined for Re(s) > 1 by the simplest of Dirichlet
series, the series
©
{s) =2, —- (24.1)

Clearly, this defines an analytic function for Re(s) > 1. Since the most interesting
properties of {(s) are tied to the region 0 < Re(s) < 1, let us examine the
question of analytic continuation. We shall follow a trail blazed by Riemann,
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(The condition Re(s) > 1 arises in two ways, one is to ensure the convergence
of the integral and the other is to ensure the connergence of the series.)
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valid for Re(s) > 1. To obtain the analytic continuation of {(s) we shall use the
functional equation of the theta function.

Write
o0

ee} 1
) €(S) 82 — f p(s/2)-1 g(t) dt = Jr + [‘

. (24.5)
Jo o J1

~

In the interval [0,1], let us replace g(¢) by its equivalent obtained from the trans-
formation formula,
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(a result obtained first in Section 9).
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In the second integral, make the change of variable ¢ = 1/t. Evaluating the
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Since | g() | = 0 (¢7™) as ¢ —o, we see that the integral is an entire function of s.
It follows that I'(s/2) {(s) is analytic except at the points s =0 and s = 1,

where it possesses simple poles. Since I'(s/2) has a simple pole at s = 0, we see
that {(s) is analytic over the entire s plane, except at s = 1, where it possesses

a simple pole. Since I'(1) = /7, we see that
1
C(S) = S—:T + ee (24-9)

in the neighborhood of s = 1, a result we shall use below.

We have thus solved the problem of the analytic continuation of {(s) over the
entire s plane. We can, however, obtain much more from the identity of 24.8.
Observe that the expression on the right-hand side of 24.8 is invariant under
the change of variable s’ =1 — s.

It follows that we have the remarkable functional equation
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Comments and References

This was the second method used by Riemann to derive the functional equation.

benen Grosse.”
iemann, Dover,
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The duplication formula for the gamma function, a result we have already
encountered, permits us to write the functional equation in the form

251 (1 — 5)
= . 25.1
) I'(s) cos (ms/2) (25.1)
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To obtain this from 24.10, we must also use the formula
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The functional equation of 24.10 shows that the function I'(s/2y7—5/2 {(s) is
symmetric about § = % Consequently, it is to be expected that this line will

play an important role in the theory of the zeta function. On t
functional equation and an asymptotic formula derived in a way we shall

subsequently discuss, Riemann conjectured that all of the zeroes of I'(s/2) {(s)
21 . 1 v
were on the line s = 3 + 1L,

been confirmed or refuted. ! n e concentrated effort of 2 number
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pothesis remains one of the outstanding
challenges of athematlcs a prize which has tantalized and eluded some of the

) =T {1 — bs) . Re(s) > 1, (26.1)

toriza-

0 for
e

It is an analytic expression of the result of Euclid concerning unique fa
tion. Although it can be deduced from this expression that {(s

Re(s) > 1, further results, meager as they are, are obtained only at great
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Kapitel 111I.

Modulformen

Einleitung

1. Vorbemerkung. Wie die elliptischen Funktionen unter gewissen Selbstab-
bildungen von C, ndmlich den Translationen eines Gitters, in sich iibergehen, so
sind die Modulfunktionen unter geeigneten Selbstabbildungen der oberen Halb-
ebene H, namlich den Modulsubstitutionen

ar +b
ct+d

mit M—(‘CZ Z

T— Mt = ) el:=S5L(2;Z)
invariant. Das wichtigste Beispiel einer solchen Funktion, die iiberdies auf H
holomorph ist, ist die absolute Invariante j = j(1), die wir bereits in 1.4.4 und
in II.LE.3 kennen gelernt haben. Es wird sich herausstellen, dass man mit j alle
Modulfunktionen beschreiben kann.

2. Mogliches Transformationsverhalten. Neben Funktionen, die unter den
Modulsubstitutionen invariant bleiben, sind aber auch Funktionen f: H — C
von Interesse, die unter den Modulsubstitutionen wenigstens noch ein iibersicht-
liches Verhalten aufweisen:

(1) f(MT) =~m(T)- f(r) fiiralle M el

Dabei sei yy/(7) ein elementarer Faktor, der noch genauer festgelegt werden
muss. Schreibt man (1) fiir M N anstelle von M und verwendet (MN)r =
M (NT), so erhdlt man (im Fall f(7) # 0) die Bedingung

(2) YMun(T) =y (NT) -yn(7) fiir M,Nel und 7e€H
an 7. Diese ,Cozykel-Bedingung® hat Ahnlichkeit mit der Kettenregel der Dif-
ferentiation. In der Tat erfiillen

_dMr

® milr) = S = (er + )

und jede Potenz davon (2). Die auf diese Weise fiir jede gerade Zahl k entste-
hende Transformationsformel
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(4) f(M7)=(ct+d)*- f(r) fir Mel

ist dann charakteristisch fiir die so genannten Modulformen. Da die Gruppe der
Modulsubstitutionen geméf Korollar I1.2.1A durch die Abbildungen

(5) 7—7+1 und 7T+ —1/7

erzeugt wird, kann man (4) durch die beiden Bedingungen

(6) fr+1)=f(r) und f(=1/7)=7" f(7)
ersetzen.

In 1.4.1 hatten wir gesehen, dass die EISENSTEIN-Reihen G} Beispiele von sol-
chen Funktionen sind. Es soll noch ein weiteres Beispiel skizziert werden, das
ein zu (6) analoges Transformationsverhalten besitzt:

3. Die klassische Theta—Reihe. In seinen Briefen an GOLDBACH vom 4. 5.
1748 und 17. 8. 1750 behandelt .. EULER im Reellen bereits die Theta Reihe

(1)  JI(r):= Z T =142 Zq”2 mit ¢:=e™ und 7€ H.
nez n=1
Im Zusammenhang mit der Warmeleitungsgleichung tritt die Theta-Reihe dann
bei J. FOURIER in Théorie Analytique de la Chaleur (Paris 1822) auf (vgl. 1.6.7).
Im Nachlass von C.F. GAUSS ( Werke 111, 436 445) fand man eine Note etwa aus
dem Jahre 1808, in der eine etwas allgemeinere Reihe (nédmlich die in 1.6.7(1)
definierte JACOBIsche Theta-Reihe ¥(z; 7)) betrachtet und fiir sie bereits eine
Transformationsformel bewiesen wird. In den Fundamenta nova wird dann von

C.G.J. JACOBI (Ges. Werke I, 198-239) die allgemeine Reihe
Z (=1)"¢" cos(2nz)

nez

unter dem Buchstaben © eingefiihrt und zur Darstellung der elliptischen Funk-
tionen verwendet. In der Bezeichnung von 1.6.7 ist ¥(7) gleich dem Nullwert

V(05 7).

Offenbar ist ¥(7) absolut und kompakt—gleichméfig konvergent auf H, so dass
¥ : H — C holomorph ist. Es gilt dariiber hinaus

(2) Hr+2)=9(r) firTeH

Die Bedeutung und das Interesse, das die Theta Reihe immer wieder gefunden
hat, liegen nun in der so genannten

Theta—Transformationsformel:

(3) 9 (=1/7)=/7/i- (1) fiir alle T€H.

Dabei ist der Zweig der Wurzel zu wéhlen, der fiir positive Argumente selbst
positiv ist.
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Beweis. Man wendet die so genannte PO1SSONsche Summationsformel auf J(iy),
y > 0, an oder was auf dasselbe hinauslauft entwickelt die modulo 1 peri-
odische, stetig differenzierbare Funktion

nez
in eine FOURIER Reihe und erhalt

Iiy) = @0) = am,

meLZ
1 0
Q= /SD(t) et — /e”t2y e Emmt gt
0 NS
Hier ist
Q= O(y) - ™™ mit B (y) = / e (tkimivi)” gy = \;@-@n/ﬂ(l)-

Nach dem CAUCHYschen Integralsatz hingt (,,(1) = 3 nicht von m ab (vgl. R.
REMMERT, G. SCHUMACHER [2002], 12.4.3) und man erhalt

V(iy) = % -1 (%) fiir y > 0.

Setzt man nun y = 1, so folgt = 1 wegen ¥(iy) > 0. Die Transformationsfor-
mel ergibt sich nun durch analytische Fortsetzung. O

Einen elementaren Beweis der P0O1SSONschen Summationsformel findet man
7. B. bei M. KOECHER [1987|, 179-181.

Betrachtet man jetzt f(7) := ¥®(7), so erhiilt man in Analogie zu 2(6)
(4) fr+2)=f(r) und  f(=1/7) =7 f(7).

Damit kennt man das Transformationsverhalten von f = 9% unter der von
den Modulsubstitutionen 7 +— 7 4+ 2 und 7 — —1/7 erzeugten Gruppe von
Automorphismen von H. Mit der Theta Gruppe I'y in 11.3.4 folgt

f(M7) = (et +d)* f(r) fiiralle M €Ty.

Ein anderer ebenfalls durch I1.3.4 nahegelegter ~ Ansatz liefert eine Funkti-
on, bei der man das Transformationsverhalten unter allen Modulsubstitutionen
kennt: Man setzt

(5) g(7) ::%-192(7')~192(7'+1)-192(1—1/7')
und verifiziert mit (2) und (3)
gr+1)=i-g(r) und g(=1/7)=1i-73 g(7).

Die vierte Potenz von g ist daher eine Modulform im Sinne von 2(6) zu k = 12.
Man vergleiche Satz 4.5 d).



§2 Dirichletsche Reihen: formale Eigenschaften

Nachdem wir die Konvergenz von Dirichletschen Reihen besprochen ha-
ben, wollen wir erldutern, wie man mit solchen Reihen umgeht - die
Regeln fiir die Handhabung Dirichletscher Reihen sind n#mlich anders
als bel Potenzreihen.

Es ist klar, daf die Summe von zwel Dirichletschen Reihen die
Reihe ist, deren allgemeiner Koeffizient die Summe der Koeffizienten
der einzelnen Reihen ist. Wie bildet man das Produkt? Seien

@ =
(1) £(s) = ] a n ¥, gls) = J b m >

n=1 m=1
zwei in einer offenen Menge U  durch absolut konvergente Dirichlet-
sche Relhen gegebene Funkticnen; dann ist in U

o=} -]

f{s) g{s) = ¥ ) a b_n ®m?3
n=1 m=1 * ®
, o e
(2) = } a_b_ (am)
a,m=1 * B
_ 3 -s
= k£1 c, kK,
wobei
{3) c,= Y a b =} a b
k n,m>1 nomoaix R k/n
nm=k

die Faltung der Koeffizienten {an} und {bm} genannt wird. (Das

Symbol } bezeichnet eine Summe Uber alle positiven Teiler n von
nik
k.) Das heigt, die additive Faltung ¢, = § a_ b_, die die Multi-
‘ ko pemex ™
plikation von Potenzrelhen beschreibt, wird in der Theorie der bDiri-

chletschen Reihen durch die multiplikative Faltung (3) ersetzt; es
ist diese Tatsache, die fiir die grofe Bedeutung der Dirichletschen
Reihen in der Zahlentheorie verantwortlich ist.

Wir werden nichts weiteres ilber die Konvergenz von Eck K % be-
weisen; man kann z.B. chne wiel Mithe zelgen, daB diese Reihe minde-
stens dann konvergiert, wenn beide Reihen (1) konvergieren und eine
davon absolut konvergent ist.

Bespiele: a) Sei d(n) die Anzahl der positiven Teiler von n. Dann
ist fir o > 1
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= E(s)z ’

(4)

da d(n) = ] 1 x 1 ist.
dln

b) sei 71(n) die Summe der positiven Teiler von n, oder allgemeiner

(5) o (n) = § af
din

die Summe der k-ten Potenzen der positiven Teiler. Dann ist
© a,.(n)

(6) ) s— = £(s) z(s-k) {o > k+1) .
n=1 n

In beiden Beispielen haben die Koeffizienten die gpezielle Eigenschaft,
multiplikativ zu sein. Eine multiplikative Funktion f£f: W » ¢ ist eine
nicht identisch verschwindende Funktion, die

(7) flmn) = £{m)f{n)

fir alle m,n mit (m,n) =1 erflillt (eine Funktion, die (7) filir
alle m,n erfiillt, heiBt streng multipiikativ}. Diese Eigenschaft wirkt
sich auf die entsprechenden Dirichletschen Reihen wie folgt aus: ist

f multiplikativ, sc¢ ist £{(1) =1 (da aus (7} f(1)2 = f(1) folgt,
und f£(1) = 0 das identische Verschwinden ven f implizieren wilrde)
und
r T
_ 1 k
f(n) = f(pl ) f(pk )

r r
fiir eine Zahl n mit der Primzahlzerlegqung n = P, v 1= k.

Es ist also in dem Bereich der absoluten Konvergenz von J £(n)n °

r

Y, r_r 5

o ¥X. r
 £{n)n" = 5 £(2 %33 5%,y (2% 3% 7.,y
n=1 r2,r3,r5,... .

(wo die Summe iiber alle Zuordnungen p - rp lduft mit rp >0 und

rp = (¢ fir alle bis auf endlich viele Primzahlen p)
r r r
£(2 %) £(3 %) £(5°

' r. s r.s T_sS
’30-20 22 33 55

)

LyrEyely

rs '

I [ 7 £
pPtrxr=0 p

wo das Produkt Uber alle Primzahlen p 1l4uft. Wir haben also den
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SATZ 1: Sei f: N -+ € e¢ine mulitiplikative Punktion, und sei die Reihe

F(s) ~ § Ll

absolut konvergent. Dom ist F(s) gleich dam Fuler—Produki

2
(8) F(sy =11+ L Bp )
P P P

wo das Produkt tber alle Primzahlen p liuft wnd auch abasolut konvergiert.

Beispiele: ¢) Filr ¢(s) sind die Koeffizienten alle gleich 1, also

{(9) zis) = I (1 + ;%,+ _%E + ...) =1 1

P p P p 1-p
Diese von EBuler entdeckte Produktentwicklung ist der Grund fiir die

grofe Relle, die die Zetafunktion in der Primzahltheorie spielt.
AuBerdem lehrt sie, daB fiir o > 1 die Punktion {8} nie ver-

= (g > 1) .

schwinden kann (da das Produkt konvergent ist und seine einzelnen
Glieder nicht Null sind). Fiir die in a) uné b} angegebenen Reihen
erhdlt man

4 )2 - -2
n=1 n P
=0 {1+ 2p " + 3p_2s + ...)
P
d(p) , 4(p*)
=1 {1+ = + N+ see)
P P B
= g (n) - - -
] £ — =1g(s) tls=k) =1 [(1 - p %) (1 - p5))7!
n= n ) P
k+1 2k+ k+1
=1 {1 + EHE_ + EL&_%%_—— + ...)
P P P
o (p) g, (p%)
=1 {1 + s + T + .ea) o
p P P

algo sind die beiden Funktionen n w» d(n) und n » Uk(n} multipli-
kativ (was man auch direkt leicht sieht), da trivialerweise die Um~-
kehrung von Satz 1 gilt: besitzt eilne Dirlichletsche Reihe ein Euler~
Produkt (8}, so stellen die Koeffizienten dieser Reihe eine multipli-
kative Funktion dar,

d) Fiir den Kehrwert E%%T erhalten wir



