Introduction

In der Theorie der Thetafunctionen ist es leicht, eine beliebig grosse Menge von
Relationen aufzustellen, aber die Schwierigkeit beginnt da, wo es sich darum
handelt, aus diesem Labyrinth von Formeln einen Ausweg zu finden.

G. Frobenius

The content of this volume is more unified than those of the first two volumes
of our attempts to provide proofs of the many beautiful theorems bequeathed
to us by Ramanujan in his notebooks. Theta-functions provide the binding
glue that blends Chapters 16—21 together. Although we provide proofs here
for all of Ramanujan’s formulas, in many cases, we have been unable to find the
roads that led Ramanujan to his discoveries. It is hoped that others will at-
tempt to discover the pathways that Ramanujan took on his journey through
his luxuriant labyrinthine forest of enchanting and alluring formulas.

We first briefly review the content of Chapters 16-21. Although theta-
functions play the leading role, several other topics make appearances as well.

Some of Ramanujan’s most famous theorems are found in Chapter 16. The
chapter begins with basic hypergeometric series and some g-continued frac-
tions. In particular, a generalization of the Rogers—Ramanujan continued
fraction and a finite version of the Rogers—Ramanujan continued fraction are
found. Entry 7 offers an identity from which the Rogers—Ramanujan identities
(found in Section 38) can be deduced as limiting cases, a fact that evidently
Ramanujan failed to notice. The material on g-series ends with Ramanujan’s
celebrated ¥, summation. After stating the Jacobi triple product identity,
which is a corollary of Ramanujan’s ;¢, summation, Ramanujan commences
his work on theta-functions. Several of his results are classical and well known,
but Ramanujan offers many interesting new results, especially in Sections
33-35. For an enlightening discussion of Ramanujan’s contributions to basic
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hypergeometric series, as well as to hypergeometric series, see R. Askey’s
survey paper [8].

Chapter 17 begins with Ramanujan’s development of some of the basic
theory of elliptic functions highlighted by Entry 6, which provides the basic
inversion formula relating theta-functions with elliptic integrals and hyper-
geometric functions. Section 7 offers many beautiful theorems on elliptic
integrals. The following sections are devoted to a catalogue of formulas for
the most well-known theta-functions and for Ramanujan’s Eisenstein series,
L, M, and N, evaluated at different powers of the argument. These formulas
are of central importance in proving modular equations in Chapters 19-21.

Several topics are examined in Chapter 18, although most attention is given
to the Jacobian elliptic functions. Approximations to n and the perimeter of
an ellipse are found. More problems in geometry are discussed in this chapter
than in any other chapter. The chapter ends with Ramanujan’s initial findings
about modular equations.

Chapters 19 and 20 are devoted to modular equations and associated
theta-function identities. Most of the results in these two chapters are new and
show Ramanujan at his very best. It is here that our proofs ::aocgm&w often
stray from the paths followed by Ramanujan.

Chapter 21 occupies only 4 pages and is the shortest chapter in the second
notebook. The content is not unlike that of the previous two chapters, but
here the emphasis is on formulas for the series L, M, and N.

Since Ramanujan’s death in 1920, there has been much speculation on the
sources from which Ramanujan first learned about elliptic functions. In com-
menting on Ramanujan’s paper [2] in Ramanujan’s Collected Papers [10],
L. J. Mordell writes “It would be extremely interesting to know if and how
much Ramanujan is indebted to other writers.” Mordell then conjectures that
Ramanujan might have studied either Greenhill’s [1] or Cayley's [1] books
on elliptic functions. Greenhill’s book can be found in the library at the
Government College of Kumbakonam, but we have been unable to ascertain
for certain if this book was in the library when Ramanujan lived in Kumbako-
nam. Hardy [3, p. 212] remarks that these two books were in the library
at the University of Madras, where Ramanujan held a scholarship for nine
months before departing for England. Hardy then quotes Littlewood’s
thoughts: “a sufficient, and I think necessary, explanation would be that
Greenhill’s very odd and individual Elliptic Functions was his text-book.”
Mordell, Hardy, and Littlewood surmised that Greenhill’s book served as
Ramanujan’s source of knowledge partly because Greenhill’s development
avoids the theory of functions of a complex variable, a subject thought to have
been never learned by Ramanujan. In particular, the double periodicity of
elliptic functions is not mentioned by Greenhill until page 254. In the un-
organized portions of the second notebook and in the third notebook, there
is some evidence that Ramanujan knew a few facts about complex function
theory. (See Berndt’s book [11].) However, Ramanujan’s development of the
theory ofelliptic functions did not need or depend on complex function theory.
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Ramanujan also never mentions double periodicity. Because Cayley’s book
contains several sections on modular equations, it is reasonable to conjecture
that this book might have been one of Ramanujan’s sources of learning.

The origins of Ramanujan’s knowledge of elliptic functions are probably
not very important, since Ramanujan’s development of the subject is uni-
quely and characteristically his own without a trace of influence by any other
author. Ramanujan does not even use the standard notations for elliptic
integrals and any of the classical elliptic functions. The content of Ramanu-
jan’s initial efforts overlaps with some of Jacobi’s findings in his famous
Fundamenta Nova [ 1], [2]. However, it is unlikely that Ramanujan had access
to this work. Moreover, while the Jacobian elliptic functions were central in
Jacobi’s development, they play a far more minor role in Ramanujan’s theory.
(Our proofs in the pages that follow undoubtedly employ the Jacobian elliptic
functions more than Ramanujan did.) Both Jacobi and Ramanujan exten-
sively utilized theta-functions, but the evolution of Ramanujan’s theory is
quite different from that of Jacobi. The classical, general theta-function 3,4(z, q)
may be defined by

I5(z, 9) = M,. e (I1)
where |g| < 1 and z is any complex number. Ramanujan’s general theta-
function f(a, b) is given by

t\..?r m.v p— M a:i+.:~v=n=l_z_m. GNV
where |ab| < 1. The generalities of (I1) and (I2) are the same. To see this, set
a = g exp(2iz) and b = g exp(2iz). For many purposes, the definition (I1) is
superior. However, for Ramanujan’s interests and theory, (12) is definitely the
preferred definition and was strongly instrumental in helping Ramanujan
discover many new theorems in the subject.

Upon studying Ramanujan’s development of the theory of modular equa-
tions in Chapters 18-21, we now are able to understand more clearly the
rationale for Ramanujan’s introduction of “modular equations” in Sections
15 and 16 of Chapter 15 of his second notebook [9], which we have previously
described in Part II [9]. Before returning to this material, we need to define
the generalized hypergeometric function ,,, F, by

e RLLQNV (o v+L z"
O O (e~ — 3:?.3?:.3,3 M (B).(B2), :mu n!’

where p is a nonnegative integer, a,,d,,...,%,+1, f1,02,..., 8, are complex
numbers, |z| < 1, and

(@), =ala+ Na+2)(a+n—1),

for each nonnegative integer n.
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Ramanujan begins his study of “modular equatons” in Chapter 15 by
defining

) h
F)i=(1—x)77 = M ik =1F(3 %),  IxI<l. (13)
He then states the trivial identity
2t
Fl—|= ).
o (1 + 0 F(t*) (14)

After setting & = 2t/(1 + t) and B = t?, Ramanujan offers the “modular equa-
tion of degree 2,”

P2 — ) =o?, (I5)

which is readily verified. The factor (1 + t) in (I4) is called the multiplier. He
then derives some modular equations of higher degree and offers some general
remarks. We emphasize that this definition of modular equation has no
connection with any of the standard definitions, but we shall draw some
parallels shortly.

There are many definitions of a modular equation in the literature. See
Ramanathan’s paper [10] or our expository introduction to Ramanujan’s
modular equations [7] for discussions of some of these alternative definitions.
We now give the definition of a modular equation that Ramanujan employed
and the one that we shall use in the sequel. First, the complete elliptic integral
of the first kind K (k) is defined by

[ =%
Ji—Fan ¢
where 0 < k < 1 and where the series representation in (I6) is found by
expanding the integrand in a binomial series and integrating termwise. The
number k is called the modulus of K, and k' := . /1 — k? is called the comple-
mentary modulus. Let K, K’, L, and L’ denote complete elliptic integrals of

the first kind associated with the moduli k, k', £, and £’, respectively. Suppose
that the equality
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holds for some positive integer n. Then a modular equation of degree n is a
relation between the moduli k and ¢ which is implied by (I7). Ramanujan
writes his modular equations in terms of ¢ and B, where « = k? and § = /2.
We shall often say that § has degree n. As we shall see in Section 6 of Chapter
17, modular equations can alternatively be expressed as identities involving
theta-functions. In fact, often one first proves a theta-function identity and
then transcribes it into an equivalent modular equation by using the formulas
in Entries 10-12 in Chapter 17. Ramanujan undoubtedly used this procedure
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in proving most of his modular equations, and we shall proceed in the same
fashion. The multiplier m for a modular equation of degrec n is defined by

m=—. (I8)

Ramanujan also established many “mixed” modular equations in which
four distinct moduli appear. See the introduction of Chapter 20 for the
definition of “mixed” modular equation.

For those not familiar with modular equations, these definitions may
appear to be arbitrary and unmotivated. The raison d‘etre can be found in
the first six sections of Chapter 17. In particular, we note that the base g in
the classical theory of elliptic functions is defined by g = exp(—nK'/K). Often
one secks relations among theta-functions where the arguments appearing are
g and g", for some integer n. Further motivation can be found in two survey
articles (Berndt [7], [8]).

Before offering some historical remarks about modular equations, we point
out the analogies between Ramanujan’s definition of a “modular equation”
in Chapter 15 and the standard definition arising from (17) that we have given
above. The E:o:.os F(x)in :3 is an analogue of K (k) in (I6). Note that if one
of the parameters § of ,F, (4, &; 1; k%) in (I6) is replaced by 1, then this hyper-
geometric function reduces to ,Fy(}; k?), which appears in (I6) with x = k.
Observe that (I5) is a relation between the “moduli” « and §. Furthermore,
note that the multiplier 1 + /\l in (14) is analogous to the multiplier defined
in (I8).

One could argue, as we did in [7], that the theory of modular equations
began in 1771 and 1775 with the appearance of J. Landen’s two papers [1],
[2] in which Landen’s transformation was introduced. Strictly speaking, the
theory commenced when A. M. Legendre [2] derived a modular equation of
degree 3 in 1825 and C. G. J. Jacobi established modular equations of degrees
3 and 5 in his Fundamenta Nova [1], [2] in 1829. Subsequently, in the century
that followed, contributions were made by many mathematicians including
C. Guetzlaff, L. A. Sohncke, H. Schréter, L. Schlifli, F. Klein, A. Hurwitz,
E. Fiedler, A. Cayley, R. Fricke, R. Russell, and H. Weber. Classical texts
containing much material on modular equations include those of Enneper [1],
Weber [2], [3], Klein [2], [3], and Fricke [3]. Enneper’s book [1] and
Hanna’s paper [1] contain many references to the literature. As we shall see
in the remainder of this book, Ramanujan’s contributions in the area of
modular equations are immense. He discovered many of the classical modular
equations found by the aforementioned authors, but he derived many more
new ones as well. With little or no exaggeration, we suggest that perhaps
Ramanujan found more modular equations than all of his predecessors dis-
covered together. After approximately a half century of dormancy, modular
equations have become prominent once again. They arise in the theory of
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elliptic curves, in the hard hexagon models of lattice gases (Joyce [1]), and in
algorithms for the rapid calculation of n (J. M. Borwein [1]; J. M. and P. B.
Borwein [1]-[6]; J. M. Borwein, P. B. Borwein, and D. H. Bailey [1]).
H. Cohn [1]-[8] and Cohn and J. Deutsch [1] have returned to the classical
viewpoints but with a more modern approach and with computer algebra.
Further references and applications of modular equations are discussed in our
expository survey paper [7]. A briefer and more elementary introduction to
modular equations has been given by us in [8]. T. Kondo and T. Tasaka [1],
[2], G. Kéhler [1], [2], and L J. Zucker [3] have recently discovered some
new beautiful theta-function identities in the spirit of those arising in the
theory of modular equations.

Many algebraic, analytic, and elementary methods have been devised to
prove modular equations. Except for H. Schroter, we have not found the
methods of others helpful in proving Ramanujan’s modular equations. Wat-
son (Hardy [3, p. 220]) has declared that “when dealing with Ramanujan’s
modular equations generally, it has always seemed to me that knowledge of
other people’s work is a positive disadvantage in that it tends to put one off
the shortest track.”

In attempting to establish Ramanujan’s modular equations, we have uti-
lized three approaches. The first relies on the theory of theta-functions and
frequently employs Schroter’s formulas, first established in his dissertation [1]
in 1854. Schréter’s primary theorem is a formula representing a product of
theta-functions as a linear combination of products of other theta-functions.
Schréter’s formulas can be found in the books of Hardy [3, p. 219], Tannery
and Molk [1, pp. 163-167], Enneper [1, p. 142], and J. M. and P. B. Borwein
[2, p. 111], as well as in a recent paper by Kondo and Tasaka [1]. In our
applications, we need to slightly modify Schréter’s formulas and obtain related
representations for f(a, b)f(c, d) + f(—a, —b)f(—¢, —d). All of the requisite
formulas are proved in detail in Section 36 of Chapter 16. Schréter [1]-[4]
utilized his formulas to find several modular equations, although, except for
his thesis [1], he never published complete proofs of his results. Ramanujan,
to our knowledge, has not explicitly stated Schroter’s formulas in any of his
published papers, notebooks, or unpublished manuscripts. However, it seems
clear, from the theory of theta-functions and modular equations that he did
develop, that Ramanujan must have been aware of these formulas or at least
of the principles that yield the many special cases that Ramanujan doubtless
used. However, Schroter’s formulas are applicable in only a small minority of
instances. We conjecture that Ramanujan possessed other general formulas
or procedures involving theta-functions that are unknown to us. In particular,
we think that he had derived a formula involving quotients of theta-functions
that he did not record in his notebooks and that we have been unable to find
elsewhere in the literature as well. Watson [5, p. 150] asserted that “a pro-
longed study of his modular equations has convinced me that he was in
possession of a general formula by means of which modular equations can be
constructed in almost terrifying numbers.” Watson then intimates that Rama-
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nujan’s “general formula” is, in fact, Schroter’s most general formula. How-
ever, as pointed out above, Schroter’s formulas cannot be used in most
instances. Further efforts should be made in attempting to discover Ramanu-
jan’s analytical methods.

The second method exploits previously derived modular equations and
may involve a heavy dosage of elementary algebra. The primary idea is to find
parametric representations for « and f§ which are then employed along with
elementary algebra to verify a given modular equation. Ramanujan probably
used such methods, especially for small values of the degree n. The algebraic
difficulties normally increase very rapidly with n. Some of our algebraic proofs
are very tedious, and it is doubtful that Ramanujan would have employed
such drudgery. Ramanujan, with his great skills in spotting algebraic relation-
ships, could undoubtedly discover modular equations using algebraic mani-
pulation, but, particularly in Chapters 19 and 20, the reader will see that some
of the proofs presented here could not have been accomplished without
knowing the modular equation in advance.

Our third method employs the theory of modular forms. [n some ways, this
represents the best approach. First, the theory of modular forms provides the
theoretical basis which explains why certain identities among theta-functions
exist. Second, this approach usually does not become too much more compli-
cated with increasing n, and so proofs remain comparatively short, after the
requisite theory has been developed. The primary disadvantage to this method
is that the modular equation must be known in advance, and so, as in the
second approach, the proofs are more properly called verifications. The princi-
pal idea is to show that the multiplier systems of certain modular forms agree
and that the coefficients in the expansion of a certain modular form are equal
to zero up to a certain prescribed point. We then can conclude that the
modular form must identically be equal to zero. This approach has been used
by A. J. Biagioli [1], S. Raghavan [1], [2], Raghavan and S. S. Rangachari
[1],and R. J. Evans [1] in establishing several of Ramanujan’s theta-function
identities. It might be argued that Ramanujan used a variant of this method
by comparing coefficients in the expansions of theta-functions. This is ex-
tremely doubtful, however, because Ramanujan would not have discovered
the identities by this procedure.

An carlier version of Chapter 16, coauthored with C. Adiga, S. Bhargava,
and G. N. Watson, was published in “Chapter 16 of Ramanujan’s second
notebook: Theta-functions and g-series,” Memoirs of the American Mathema-
tical Society, vol. 53, no. 315, 1985. The revised version appears here by
permission of the American Mathematical Society. A substantial majority of
the theorems and proofs appearing in Chapters 17-21 have not heretofore
appeared in print. B. C. Berndt, A. J. Biagioli, and J. M. Purtilo [1]-[3] have
proved some of Ramanujan’s modular equations in journals commemorating
the centenary of Ramanujan’s birth. A brief description of Ramanujan’s work
on Eisenstein series in Chapter 21 was given by us in [10]. Some of Ramanu-
jan’s work on modular equations has also been examined by K. G. Rama-



nathan [9], [10], V. R. Thiruvenkatachar and K. Venkatachaliengar [1], and

K. Venkatachaliengar [1].

To help readers find modular equations of certain degrees, we offer a table
indicating the chapter and sections where the desired modular equations may

be found.
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Degree Chapter Sections

3 19 57

5 19 11,13

7 19 18, 19
20 21

11 20 7

13 20 &

15 20 21

1 20 12

19 20 16

23 20 15

31 20 22

47 20 23

71 20 23

3,9 20 3

5,25 19 15

3,515 20 11

3,7,21 20 13

3,921 20 5

3,11,33 20 14

3,13, 39 20 19, 21

3,21, 63 20 20

3,29, 87 20 24

5735 20 18, 19

5 11,55 20 19, 21

5,19,95 20 20

5, 27,135 20 24

7,9,63 20 19,21

7,17, 119 20 20

7,125,175 20 24

9, 15,135 20 20

9, 23,207 20 24

11,13,143 20 20

11,21, 231 20 24

13, 19, 247 20 24

15, 17,255 20 24

Each of Chapters 16—20 in the second notebook contains 12 pages, while
Chapter 21 has only 4 pages. The number of theorems, corollaries, and

pvamnlec faund in parh chanter ic licted in the fallawinoe tahle
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Chapter Number of Results
16 134
17 162
18 135
19 185
20 173
21 45
Total 834

Many of the theorems that Ramanujan communicated in his letters of
January 16, 1913 and February 27, 1913 to G. H. Hardy may be found in
Chapters 16-21. We list these results in the following table.

Location in Collected Papers

Location in Notebooks

. xxviii, (1)

. Xxviii, (6)

. Xxix, (15)

. xxix, (20) (1), (v)

Xxix, (21)

350, (3)

. 353, (20) (id), (iti), (iv), (vi)
. 353, (21)

. 353, (22)

YU PO TY YT

Chapter 16, Entry 15 and corollary, Entry 39 (i)
Chapter 20, Entry 20 (i)

Chapter 18, Corollary in Section 12

Chapter 20, Entries 11 (i), (ii), (xiv)

Chapter 20, Entry 19 (iii)

Chapter 18, Entry 12 (ii)

Chapter 20, Entries 11 (iit), (iv), (v), (xv)
Chapter 20, Entry 19 (iii)

Chapter 20, Entry 24 (i)

A few of Ramanujan‘s published papers and questions posed to readers of
the Journal of the Indian Mathematical Society have their origins in Chapters
16-21 of the second notebook. In some cases, only a small portion of the paper
actually arises from material in the notebooks. The following table lists those
papers and the corresponding locations in the notebooks.

Paper

Location in Notebooks

Squaring the circle

Modular equations and
approximations to ©

Question 584

Some definite integrals

Question 662

On certain arithmetical
functions

Question 755

Proof of certain identities in

ramhinatnrv analveic

Chaper 18, Entry 20 (i)

Chapter 18, Entry 3, Corollary in
Section 3; Chapter 21

Chapter 16, Entries 38 (i), (i)

Chapter 16, Entry 14

Chapter 19, Entry 7 (iv) (first part)

Chapter 16, Section 35; Chapter
17, Entry 13

Chapter 18, Corollary (ii) of
Section 19

Chapter 16, Entries 38 (1), (i1)
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In the sequel, equation numbers refer to equations in the same chapter,
unless another chapter is indicated. Unless otherwise stated, page numbers
refer to pages in the pagination of the Tata Institute’s publication of Ramanu-
jan’s second notebook [9]. Page numbers unattended by any reference num-
ber always refer to Ramanujan’s second notebook. Parts I and II refer to the
author’s accounts [5] and [9], respectively, of Ramanujan’s notebooks.

We mention some standard notations that will be used in the sequel. The
rational integers, the rational numbers, the real numbers, and the complex
numbers are denoted by [, 0, R, and %, respectively. The residue of a mero-
morphic function f at a pole « is denoted by R,, if the identity of the function
f 1s understood.

I am very grateful to many mathematicians for the proofs and suggestions
that they have supplied. I am most indebted to G. N. Watson for the notes
that he compiled on Chapters 16-21. In particular, many of the proofs in
Chapters 19-21 are due to Watson. F. J. Dyson [1, p. 7] has affirmed that
“Watson was chiefl gardener in the 1930’s and worked hard to develop and
elucidate Ramanujan’s ideas.” Evidently, Watson was very careful about
whom he would permit to stroll through this garden. However, through the
extensive notes that he left behind, he has allowed me to view many of the
flowers in the garden, and [ am very appreciative.

I owe special thanks to the following mathematicians. C. Adiga and S.
Bhargava made many contributions in their coauthoring an earlier version of
Chapter 16 with me. The quality of Chapter 16 has greatly been enhanced by
the many suggestions offered by R. A. Askey. A. J. Biagioli and J. M. Purtilo
provided invaluable and necessary help in the theory of modular forms and
MACSYMA, respectively. R. J. Evans [1] furnished beautiful proofs of some
of Ramanujan’s most intractable theta-function identities, and we have re-
produced in the sequel much of his paper. L. Jacobsen has contributed several
helpful remarks and suggestions on continued fractions.

For their comments and suggestions, [ am also obliged to G. Almkvist,
G. E. Andrews, J. M. and P. B. Borwein, J. Brillhart, R. L. Lamphere,
R. Miiller, C. Rama Murthy, K. G. Ramanathan, K. Stolarsky, M. Villarino,
H. Waadeland, J. Wetzel, and 1. J. Zucker.

The author bears the responsibility for all errors and wishes to be notified
of such, whether they be minor or serious.

Most of the manuscript for this book was typed by Dee Wrather, and I
thank her for her very accurate and rapid typing.

The figures in Chapters 18 and 19 were drawn by Jonathan Manton using
the graphics of Mathematica.

A perusal of the references at the conclusion of this book indicates that
several are obscure. Nancy Anderson, the mathematics librarian at the Uni-
versity of Illinois, helped to unearth many of these, and [ owe her special
thanks.

Lastly, T express my deep gratitude to James Vaughn and the Vaughn
Foundation, and to the National Science Foundation for their financial
snnnort l_:.wjnu several siimmers

CHAPTER 16

g-Series and Theta-Functions

In Chapter 16, Ramanujan develops two closely related topics, q-series and
theta-functions. The first 17 sections are devoted primarily to g-series, while
the latter 22 sections constitute a very thorough development of the theory of
theta-functions.

Ramanujan begins by stating some mostly familiar theorems in the theory
of g-series. In particular, Ramanujan rediscovered some of Heine's famous
theorems including his g-analogue of Gauss’ theorem. However, several re-
sults appear to be new. Perhaps most noteworthy in this respect are the
continued fractions in Sections 10-13. (Entry 10 is not a g-continued frac-
tion and is more properly placed in Chapter 12 among other theorems of this
type.) Entry 13 was later generalized by Ramanujan in his “lost notebook”
[11]. Entry 16 is a “finite” form of what is now generally known as the
“Rogers—Ramanujan continued fraction” and was first established in print
by Hirschhorn [1] in 1972 while being unaware that the result is found in
Ramanujan’s notebooks.

As is to be expected, Ramanujan’s findings in the theory of theta-functions
contain many of their classical properties. In particular, he rediscovered
several theorems found in Jacobi’s epic Fundamenta Nova [1], [2]. In Entry
27, Ramanujan records transformation formulas for the modular transforma-
tion: T(r) = — 1/z. He did not discover more general transformation formulas.
In Entry 19, Ramanujan gives the famous Jacobi triple product identity of
which he made numerous applications. Because several of our proofs employ
Watson’s quintuple product identity, it would seem that Ramanujan had
discovered it. Indeed, the quintuple product identity can be found in Ramanu-
jan’s “lost notebook™ [11]. Results in the last part of Chapter 16 indicate that
Ramanujan had found Schréter’s formulas [1]. Although Ramanujan does
not give these formulas in their most general form, he does offer several special
cases and deductions from them.
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But more importantly, Ramanujan discovered several new and deep theo-
rems in the theory of theta-functions. For example, the beautiful theorems in
Sections 33—35 appear to be new, as well as Entry 38(iv) and the corollaries
in Section 37.

In closing our brief survey of the content of Chapter 16, we would like to
mention that this chapter contains four results that are due originally to
Ramanujan and for which he is justly famous. Entry 14 offers Ramanujan’s
g-analogue of the beta-function. The evaluation of this integral was first
recorded by Ramanujan in [4], [10, p. 57]. There are now at least four distinct
verifications. In Entry 17 we find “Ramanujan’s i, summation.” Several
proofs, including a new one offered here, now exist. Ramanujan found many
applications for his ¥, summation, including a proof of Jacobi’s triple pro-
duct identity. The remarkable Rogers—Ramanujan identities are found in
Entries 38(i), (i), and the “Rogers—Ramanujan continued fraction” in Entry
38(iii). Tt might be remarked that this continued fraction is the only continued
fraction proved in Ramanujan’s published papers. However, he did submit
several formulas containing continued fractions to the problems section of the
Journal of the Indian Mathematical Society. Also, Ramanujan’s letters to
Hardy contain many beautiful theorems on continued fractions.

We conclude our introduction with several remarks on notation. For those
reading this book in conjunction with the notebooks, it seems best to retain
Ramanujan’s notation f(a, b) for the theta-functions (see (18.1)). We remark
that f(a, b) = 94(z, 7), where ab = €™, a/b = e* and 9,(z, ©) denotes the
classical theta-function in the notation of Whittaker and Watson [1]. Most
of the results in the sequel are, in fact, more easily stated in the notation f(a, b)
rather than in the notation $5(z, ). Ramanujan uses x to denote his primary
variable. Since g is almost universally used today instead of x, we have adopted
the more standard designation. It is assumed throughout the sequel that
lq] < 1. As usual, for any complex number a, we write

(@) = (a; g} = (1 — a)(1 — ag)(1 — ag®}---(1 — ag*™")
and

(@) = (@ Qo = mo (1 — ag).

Ramanujan writes | [ (—a, x) for (a),, where x = q. The basic hypergeometric
series 4, @s is defined by

k
7 B R 1 18 =z a a, ) lag X
i 1 2 +__“.K s M A nurﬁ Mvw A +Hwk L, AO»V
by By B =6 (bbb (g
where |x| < 1 and a,,a,, ..., @415 by b2, ey b, are arbitrary, except that,
of course, (b)), #0, 1 <j <5, 0<k < oo. If sis “small,” we shall write
o+1@s(@1s + -5 @13 Bys -5 by %) in place of the notation at the left side of

(0.1). Finally, to denote the dependence on the base g, we may write
m;-—ﬁ.»fu: skt nuu+_“ &T Eey T....w q; .Xw.
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Entry 1. Let g be real with |q| < 1, and suppose that a and x are any complex
numbers. Let the principal branches of (1 — a)* and (1 — g)* be chosen. Then

. . @s .

(1) Mﬁglﬁlnf
(ii) fim— Do et

a-1 (1 — @(@"" "), '
(i) @ = T (@ 4"
k=0

and
(iv) i, = /2

RN

ProoF. First assume that |a] < 1. Apply (2.1) below with a and ¢ replaced by
ag* and g%, respectively. Hence,
(a)y o (=x)(—x+ 1) (—x+k-=1) ,

Iim ——— =1 =(1 —a)*
a—1(aq%), * P k! & =1 —ar

by the binornial theorem. The general result follows by analytic continuation.
The following proof of (ii) is due to R. W. Gosper, Write

. Sv . © ] — Qr ] = api 2
lim— 22 = 1]im
g1 (1 — ﬁuguivs g—1 »—M 1— Q.lx 1 - ak
© k k+ 1\
=[] =T(x+1).

=i k+x k
Identity (iii) follows easily by regrouping the factors on the left side. To prove
(iv), let n = 2 in (iii) and replace g by /\m

The g-gamma function I (x) is defined by

(9 =
HJ = _ 1-x
(%) @) 1—q) ™~ (1.1)

Thus, Entry 1(ii) may be rewritten in the form

:w: x+1)=T(x+1).

o1

Gosper’s proof of Entry 1(ii} may also be found in Andrews’ monograph [18,
P. 109]. Our proofs of Entries 1(i), (ii) are not completely rigorous, because
limits were taken without justification under the summation and product
signs, respectively. T. H. Koornwinder [1] has indeed justified these formal
processes and provided rigorous proofs.

Ramanujan’s proof of Entry 2 below can be found in his paper [4] [10,
pp. 57-58].
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Entry 15. If |q| < 1, then
@» k2

o (aqhl@) 14 bq bg bq
prghkt+n l—ag+1—ag*+1—ag*+-
o (aq)(s

Dl

Proor. Let f(b, a) be defined by (13.2). Replacing a by aq in (13.4) and adding
the result to (13.3), we find that

f(b,a) = (1 — aq)f(bq, aq) + bqf(bg®, ag®).

Replacing a by ag"™"' and b by bq", we may rewrite the previous equality in
the form

2 3

n[\/]s

u[\/jg

f(bq", aqg"™") bg"*!
o i B 5.1, 15.1
:E._:,é: & bgixécv=| gh

\.A@Qa.vnm QQ:.‘._H
Using (13.4), (15.1), and iteration, we deduce that
Jba) _ + bq bq bq*
f(bg, a) flbg, a) 1 —aq + f(bq? aq)
f(bg?, aq) f(bg*, ag*)
L ba bq* bq?
l—ag+1—ag’ +1—ag’ +-

That this continued fraction converges and that it converges, indeed, to
f(b, a)/f(bg, a)follow as in the proof of Entry 13. If b # 0 and aq” = 1 for some
positive integer n, then equality holds with the convention that we take the
limit of both sides as a tends to 1/¢". If b = 0 and aq" = 1, we interpret both
sides as equaling 1. This completes the proof.

Corollary. If |g| < 1, then

PROOF. Set a =0 in Entry 15 and then replace b by a. The corollary now
readily follows.

The continued fractions of both Entry 15 and its corollary were mentioned
by Ramanujan [10, p. xxviii] in his second letter to Hardy. The corollary was
established earlier by Rogers [1, p. 328, Eq. (4)] and then later by Watson [3].
The special case a = 1 is Entry 38(ii1) and is discussed in detail in Section 38.
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Ramamani [1] has given a similar proof of Entry 15 by obtaining functional
relations for the function

§ (~1ftjapate™ee

k=0 (g
and using Entry 9. Entry 9 is not used in our proof. Entry 16 below provides
a finite version of Entry 15. Thus, an alternative proof of Entry 15 is obtained

by letting n tend to co in Entry 16. Hirschhorn [1], [4] has given a proof of
Entry 16; perhaps our proof is somewhat simpler.

Entry 16. For each positive integer n, let

[(n+1)2] aratﬁv:\_ﬁi
p= pyla, q) = e
»M.c (@(@n=2041

and
(21 a*q***(g),-
v=yaq =y o ok
k=0 (@hlq)n-2x
Then
a 2 n
b_yad @ @
v L+ 1 4+ 4 1

ProoF, For each nonnegative integer r, define

E = :=..~M+,.:E Q»Q:lssuallni
k=0 (Di(@n—r— 2641
Observe that Fy =y, F; =v, F, =1, and F,_, = | + aq". A straightforward
calculation shows that

&...‘1 — Ly = QQ1+~M,1+~“ r=0. A—@.Hv
Using (16.1), iteration, and the special cases pointed out above, we find that
a.; 2
k_Ffo_ |+ aq -1 +§ aq
v ﬁ_ F,/F, 1 + F,/F;
2 n—1
— (g2 821 .
m + H ...nTm.aIn\aﬂ:
2 n—1 n
.9 aq’ aq aq

L+ 1 +4 1 + 1°
which is the required result.
Entry 17 offers another famous discovery of Ramanujan known as “Rama-

nujan’s summation of the ,.” It was first brought before the mathematical
world by Hardy [3, pp. 222, 223] who described it as “a remarkable formula
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with many parameters.” Hardy did not supply a proof but indicated that a
proof could be constructed from the g-binomial theorem. The first published
proofs appear to be by W. Hahn [1] and M. Jackson [1] in 1949 and 1950,
respectively. Other proofs have been given by Andrews [2], [3], Andrews and
Askey [2], Askey [2], Ismail [1], Fine [1, pp. 19-20], and Mimachi [1]. The
short proof of Entry 17 that we offer below has been motivated by Askey’s
paper [2] and has been discovered independently by K. Venkatachaliengar
[1]. See also his monograph with V. R. Thiruvenkatachar [1]. Askey [4] has
discussed our proof along with a “proof” of a “false theorm” to illustrate
certain pitfalls in formally manipulating Laurent series.

We emphasize that Entry 17 is an extremely useful result, and several
applications of it will be made in the sequel. Fine [1] and Bhargava and Adiga
[5] have employed Entry 17 in their work on sums of squares. For a connec-
tion between Entries 14 and 17, see Askey’s paper [2]. Further applications
of Entry 17 have been made by Andrews [10], [18, Chap. 5], Askey [3], [5],
and Moak [1]. A generalization of Entry 17 has been found by Andrews [12,
Theorem 6].

As we shall see in Section 19, the Jacobi triple product identity is a special
case of Ramanujan’s ¥, summation. In 1972, I. Macdonald [1] found multi-
dimensional analogues of the Jacobi triple product identity, which can also
be considered as analogues of Entry 17, and which are now called the Mac-
donald identities. One of the Macdonald identities is, in fact, the quintuple
product identity, discussed in detail in Section 38. More elementary proofs of
some of Macdonald’s identities have been found by S. Milne [1]. These
considerations partly motivated Milne [2]-[4] to develop multiple sum gen-
eralizations of Ramanujan’s ,¥, sum. R. Gustafson [1] has found further
analogues of the i, summation. Lastly, we mention that D. Stanton {1] has
developed an elementary approach to the Macdonald identities.

Entry 17. Suppose that |fq| < |z| < 1/|ag|. Then
2 (o g®h(—ag)f , = & (1/8; ¢*)(—Ba)f _,
bt *M (Ba%a) +_,M_ (@’ O
(=92 4%)(—4/7; %), | [(a% 42)u(®Bg% ¢7).

= . 17.1
(—a4z; 40— Pajz: )] Naa® (b 1) 7Y

PROOF. Let f(z) denote the former expression in curly brackets on the right
side of (17.1). Since f(z) is analytic in the annulus, |fg| < |z| < 1/|agq|, we may
set

A= % czt  1Bal <zl < Vlagl

k=—o0

From the definition of f, it is easy to see that

(B + 42)f(q%2) = (1 + 2q2)f(2),
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provided that also |fq| <|g®z|. Thus, in the sequel we assume that

IB/al < |z| < 1/legl. .
Equating coefficients of z*, — o0 < k < oo, on both sides, we find that

Ba* e, + ¢y = ¢+ agey . (17.2)
Hence,
= — aq(1 MWNWMM\WVQP, | <k< oo,
and
o Ba(l — QNTN\EPK;. i i b

] s QQN___“
where, to get the latter equality, we replaced k by 1 — k in (17.2). Iterating the
last two equalities, we deduce that, respectively,

(—agq)(1/a; g*)co
(Ba* a*

¢y = ., 1<k<oo, (17.3)

and
. HA\QQE_\F auvwmo
& (og®; q*)

Examining (17.1), we see that, to complete the proof, it suffices to show that

, 1 <k <oo.

i 52 2, .2
_ ﬁm 1 vsamp, vas. (17.4)
(0% 4%)w(@Bq™; 4%y
Now let ¢(z) and Y (z) denote, respectively, the two infinite series on the left
side of (17.1). Now f(z) has a simple pole at z = —1/ag, and since (z) is
analytic for |z| > | iq|, we find that

Co

Iim (1 +og2)f(z)= lim (1 + agz)e(z) = lim (=1c, (17.5)

z——1/agq z—+—1/ag n—+ao Aonﬂw: ’

by Abel’s theorem. Using the definition of f(z) and (17.3), we may rewrite (17.5)
in the form

1/ 4%)(@4%; ) _ (1/% 4%)sCo

@% 4*)(@Ba* 4w (B4% 47
Equality (17.4) obviously follows, and so the proof of Entry 17 is complete for
|B/q| < |z| < 1/lag|. By analytic continuation, (17.1) is valid for |fq| < |z| <
1/|aq.

Entry 17 can be reformulated in a more compact setting. We first extend
the definition of (c; g), by defining
(€ Do

.Anv* =(c;q) = gv
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for every integer k. In Entry 17, now replace a, §, and z by 1/a, b/q?, and —az/q,
respectively. Lastly, replace g° by g. Then (17.1) can be written in the form

M Aﬁww Nk AQNVUQAQ\DNWBAQWBH@\QWB ; Cﬂ@v

22D, (2)o(b/02) (D) (q/ )
where |b/a| < |z]| < 1.
For another proof of (17.4), see the monograph of Thiruvenkatachar and
Venkatachaliengar [1].

Corollary. If |ng| < |z| < 1/|nq|, then
(1/m; ¢* ) —ng)*(z* + z7%)
1+
M (g% q*)

_ (=97 4")u(— 9/7; 4°)u(0”; 47)(n* 0% 4%)oo
(—ngz; ¢*)(—na/z; q vs?a e

PrROOF. Set ¢ = ff = nin Entry 17.
The remainder of Chapter 16 is devoted to the theta-function

fla,b)=1+ M (ab)«~D2(gk 4 p*) = M gk ORpRE=12 (18 1)

k=—-w
where |ab| < 1. If we seta = ge?™%, b = ge 2, and q = ™", where z is complex
and Im(t) > 0, then f(a, b) = 94(z, 1), where 34(z, 1) denotes one of the clas-
sical theta-functions in its standard notation (Whittaker and Watson [1,
p. 464]). Thus, all of Ramanujan’s theorems on f(a, b) may be reformulated
in terms of 9,(z, 7). It seems preferable, however, to retain Ramanujan’s
notation. Not only will the reader find it easier to follow our presentation in
conjunction with Ramanujan’s, but Ramanujan’s theorems are more simply

and elegantly stated in his notation.

Entry 18. We have

(i) fla, b) = f(b, a),
(ii) fU,a) = 2f(a, a°)
(iii) f(—=1,a =0
and, if n is an integer,
(iv) [la, b) = o™ Zpnin=102 f(q(ab)", b(ab) ™).

Ramanujan remarks that (iv) is approximately true when n is not an integer.
We have not been able to give a mathematically precise formulation of this
statement. Repeated use of (iv) will be made in the sequel.
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Proor. First, (i) is obvious.

Second,
o0
f(lLag)=2+ M gkte+1z M,. a*—n/2
k=1 k=
[2e}
A M kik+1)2
k=1
a0 o0
M M QE_S:.:N
_ k=1
€n k od
A < Eur+: - k(2
+ Y gh@b
L P
=2{1+ M k= .E?JET«:E + M,. akk+1)/2(43 u_&, 1)/2
k=
= 2f(a, a*).
Third,
a0 o0
fl=1,a)= ¥ (—1k+zghte-tz 4 Y (= DEDR2gD2

k

2 k=1

upon the replacement of k by k + 1 in the first sum on the right side.
Fourth, replacing k by k + n on the far right side of (18.1), we find that

fla, b)

a
M b;+=v;+a+u‘:ﬁ@;+=xm+=l:.ﬁ

k=—wm

o0
|D=_..=+:.B®i=l:.§ M hm;+~=+:ﬁ&w:ﬁ+mal:_ﬁ

k=—-x

= =_:+:__N@=? 1)/2 M AQAQ&Q:W‘A#+:\_NA®AQ@V k(k— :.ﬁ

k=—wo

which completes the proof of (iv).

Entry 19. We have
fla, b) = (—aj; ab)(—b; ab) (ab; ab),,

PrOOF. In Entry 17,let gz = a,q/z = b,and x = f = (.

In the notebooks [9, Vol. 2, p. 197], Ramanujan informs us how he proved
Entry 19 by remarking: “This result can be got like XVI. 17 Cor. or as follows.
We see from iv. that if a(ab)" or b(ab)" be equal to —1 then f(a, b) = 0 and
also if (ab)" = 1, f(a, b){1 — (a/b)"*} = 0 and hence f(a, b) = 0. Therefore
(—a; ab),,(—b; ab),,, and (ab; ab),, are the factors of f(a, b).” (We have slightly
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altered Ramanujan’s notation.) The product and series in Entry 19 converge
only when |ab| < 1, but there is even a more serious objection to Ramanujan’s
argument. It is not clear that the only factors of f(a, b) are (—a; ab),,,(—b; ab),,,
and (ab; ab),,

Entry 19 is Jacobi’s famous triple product identity, established in his
Fundamenta Nova [1], [2] but, in fact, first proved by Gauss [3, p. 464]. See
the texts of Andrews [9, pp. 21, 22] and Hardy and Wright [1, pp. 282, 283]
for other proofs.

Entry 20. If off = n, Re(a?) > 0, and n is any complex number, then
/\m.\.Amvluuf:Ru mlnulznv s Nau\b/\m\.mmlbu+§u' ﬁwl_mwl_...:mv.

Entry 20 is a formulation of the classical transformation formula for the
theta-function 95(z, r) (Whittaker and Watson [1, p. 475]). This entry is also
recorded in Chapter 14 [9, Vol. 2, p. 169, Entry 7]. A proof via the Poisson
summation formula is sketched in our book [9, p. 253].

Entry 21. If |q|, |a|, |b| < 1, then

) 3 @ Arl :»\_h
Hkomﬁrrb, QvB - FMH jw. ANH:
and
w [ 1YL,k k
Log f(a, b) = Log(abs ab), + 3 =1 @+ 212)

& k(1 - akb*)

Proor. For |g|, |a] < 1,

ol w P |_klp nyk
Log(—a;q) = M Log(l +ag") = 3 3 £E
n=0 n=0 k=1
ISA :p~ o0 B SAICT_Q
=X AT R

Equality (21.2) follows immediately from Entry 19 and (21.1).

Entry 22. If |g| < 1, then

e _ (—34°):9% 4%)s
(4: 99— 4% 0%)

0 o= f@a=1+2 w q

. 2 (% q%)
. 3y k(k+1)2 _ 4 24 Jeo
(ii) ¥(q) =g, q°) _"Mo@ I

() S~ == —g7) = 3 (=1} 4 3 (—ppgheenr

k=

=(q; §aos
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and

vy 219 = (—¢; ")

Observe that ¢(g) = 9,(0, 1), where g = e™*. If g = &*™", then f(—q) =
e~ ™1 2p(1), where n(t) denotes the classical Dedekind eta-function. Equality
(iii) is a statement of Euler’s famous pentagonal number theorem [1], [5]. See
Andrews’ book [9, pp. 9-12, 14] for an elementary proof and further refer-
ences. Note that (iv) is only a definition of x(q).

ProOF OF (i). The first equality follows immediately from the definition (18.1)

of f(a, b).
From Entry 19,

(g, 9) = (—4q; *)2(d%; 4w (22.1)
Now,
© < 1 +4q"
—q; 2 — 1 2n—1
(—4;4%)s :MT + ¢ )= _u_fw
1 —g*" 1

=T i g s (22
G T—aV1A+ ¢ (@ el— 05 D

which is a famous identity of Euler. Substituting (22.2) into (22.1), we complete

the proof of (i).

Observe that (22.2) may be rewritten in the form

1
(— s = 5 (22.3)
(45 3%)w
The equality (22.3) is the analytic equivalent of Euler’s famous theorem: the
number of partitions of a positive integer n into distinct parts is equal to the
number of partitions of n into odd parts.
Using (22.3) in Entry 22(i), we derive the useful representations

o(—9) = (4 9l(d; 4%)0 = E. (22.4)
= @i
Proor oF (ii). For |g| < 1,

an

o0
3y 2k(2k—1)/2 2k(2k+1)/2
Mg =14 % g™ @02 4 5 greer
k=1 k=1
S (k+1)/. kik+1)/2
= M q o M a. ).
k=1 =0
k odd keven
an
k(k+1)/2
=y gkkrnz,

=
I

[

which proves the first equality.



