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& The Kac—Wakimoto Conjecture

For any two natural numbers m and n, denote by A,,(n) the number of
representations of n as a sum of m triangular numbers (numbers of the form
a(a—1)/2 with a integral). Since 8a(a —1)/2+4 1 = (2a — 1)?, this can also be
written as the number 534 (8n+m) of representations of 8n+m as a sum of m
odd squares. As part of an investigation in the theory of affine superalgebras,

Kac and Wakimoto were led to conjecture the formula

Ayg(n) = Z Py(ay,...,as) (35)

T1,Q1, ..., Ts,0s € Noaa
ria1+-Frsas = 2n+s>

for m of the form 4s? (and a similar formula for m of the form 4s(s + 1)),
where Nogq = {1,3,5,...} and P is the polynomial

_ [[;ai- Hi<j(az2 _a?)Q

Ps s e s
(a1,.,04) 456=0) ol T2 5!

Two proofs of this were subsequently given, one by S. Milne using elliptic func-
tions and one by myself using modular forms. Milne’s proof is very ingenious,
with a number of other interesting identities appearing along the way, but is
quite involved. The modular proof is much simpler. One first notes that, Ps
being a homogeneous polynomial of degree 252 — s and odd in each argument,
the right-hand side of (35) is the coefficient of ¢®"*+" in a function F (z) which
is a linear combination of products gp, (2) -+ gn.(2) with hy + -+ + hy = 52,
where gr(2) = >_, senou a?t=1q™ (h > 1). Since gy, is a modular form (Eisen-
stein series) of weight 2h on I(4), this function F is a modular form of weight
252 on the same group. Moreover, its Fourier expansion belongs to qszQ[[qQH
(because Py(aq,...,as) vanishes if any two a; are equal, and the smallest
value of ria; + --- + rsas with all r; and a; in Nygq and all a; distinct is
1+3+:--+2s—1=s?), and from the formula given in §1 for the number of
zeros of a modular form we find that this property characterizes F'(z) uniquely
in Ma,2(I(4)) up to a scalar factor. But 0 (z)%*" has the same property, so
the two functions must be proportional. This proves (35) up to a scalar factor,
easily determined by setting n =0. ©

3.2 Theta Series in Many Variables

We now consider quadratic forms in an arbitrary number m of variables. Let
Q : Z™ — Z be a positive definite quadratic form which takes integral values
on Z™. We associate to @ the theta series

Oo(z) = 3 ¢ = 3 Ro(m)g”, (36)
n=0
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where of course ¢ = €™ as usual and Rg(n) € Z>( denotes the number of
representations of n by @, i.e., the number of vectors € Z™ with Q(z) = n.
The basic statement is that O is always a modular form of weight m/2.
In the case of even m we can be more precise about the modular transfor-
mation behavior, since then we are in the realm of modular forms of in-
tegral weight where we have given complete definitions of what modularity
means. The quadratic form @)(x) is a linear combination of products x;z; with
1 <4, j <m. Since z;x; = xjx;, we can write Q(z) uniquely as

m
Qz) = %xtAx = % Z aijT;iT; (37)
i,j=1
where A = (a;)1<i,j<m is a symmetric m x m matrix and the factor 1/2 has
been inserted to avoid counting each term twice. The integrality of @ on Z™
is then equivalent to the statement that the symmetric matrix A has integral
elements and that its diagonal elements a;; are even. Such an A is called an
even integral matriz. Since we want Q(z) > 0 for x # 0, the matrix A must
be positive definite. This implies that det A > 0. Hence A is non-singular
and A1 exists and belongs to M,,(Q). The level of @Q is then defined as the
smallest positive integer N = Ng such that NA™! is again an even integral
matrix. We also have the discriminant A = Ag of A, defined as (—1)" det A.
It is always congruent to 0 or 1 modulo 4, so there is an associated character
(Kronecker symbol) xa, which is the unique Dirichlet character modulo N

A
satisyfing xa(p) = (—) (Legendre symbol) for any odd prime p t N. (The
p

character ya in the special cases A = —4, 12 and 8 already occurred in §2.2
(eq. (15)) and §3.1.) The precise description of the modular behavior of ©¢g
for m € 27 is then:

Theorem (Hecke, Schoenberg). Let Q : Z?* — 7 be a positive definite
integer-valued form in 2k variables of level N and discriminant A. Then Og
is a modular form on I'h(N) of weight k and character xa, i.e., we have

Oq(2EL) = xala) (cz + d)F Oq(2) for all z € H and (24) € TH(N).

The proof, as in the unary case, relies essentially on the Poisson sum-
mation formula, which gives the identity Og(—1/Nz) = N*¥/2(z/i)* Og-(2),
where Q*(z) is the quadratic form associated to NA™!, but finding the pre-
cise modular behavior requires quite a lot of work. One can also in principle
reduce the higher rank case to the one-variable case by using the fact that
every quadratic form is diagonalizable over @, so that the sum in (36) can
be broken up into finitely many sub-sums over sublattices or translated sub-
lattices of Z™ on which Q(z1,..., %, ) can be written as a linear combination
of m squares.

There is another language for quadratic forms which is often more conve-
nient, the language of lattices. From this point of view, a quadratic form is no
longer a homogeneous quadratic polynomial in m variables, but a function @
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from a free Z-module A of rank m to Z such that the associated scalar prod-
uct (z,y) = Q(z +vy) — Qx) — Q(y) (x, y € A) is bilinear. Of course we can
always choose a Z-basis of A, in which case A is identified with Z™ and Q
is described in terms of a symmetric matrix A as in (37), the scalar product
being given by (z,y) = x! Ay, but often the basis-free language is more conve-
nient. In terms of the scalar product, we have a length function |z|? = (x,z)
(actually this is the square of the length, but one often says simply “length”
for convenience) and Q(z) = 3[|z||?, so that the integer-valued case we are
considering corresponds to lattices in which all vectors have even length. One
often chooses the lattice A inside the euclidean space R with its standard
length function (z,z) = ||z]|> = 2?2 + -+ + 22; in this case the square root
of det A is equal to the volume of the quotient R™/A, i.e., to the volume of
a fundamental domain for the action by translation of the lattice A on R™. In
the case when this volume is 1, i.e., when A € R™ has the same covolume as
Z™, the lattice is called unimodular. Let us look at this case in more detail.

& Invariants of Even Unimodular Lattices

If the matrix A in (37) is even and unimodular, then the above theorem tells
us that the theta series Og associated to () is a modular form on the full
modular group. This has many consequences.

Proposition 12. Let QQ : Z™ — 7Z be a positive definite even unimodular
quadratic form in m variables. Then

(i) the rank m is divisible by 8, and
(ii) the number of representations of n € N by Q is given for large n by the
formula

Rq(n) = —%’Zak_mm + 0(n*?)  (n—o00), (38)

where m = 2k and By, denotes the kth Bernoulli number.

Proof. For the first part it is enough to show that m cannot be an odd multiple
of 4, since if m is either odd or twice an odd number then 4m or 2m is an
odd multiple of 4 and we can apply this special case to the quadratic form
RQPRQPQPQ or Qe Q, respectively. So we can assume that m = 2k with
k even and must show that k is divisible by 4 and that (38) holds. By the
theorem above, the theta series ©¢ is a modular form of weight k on the full
modular group Iy = SL(2,Z) (necessarily with trivial character, since there
are no non-trivial Dirichlet characters modulo 1). By the results of Section 2,
this modular form is a linear combination of G (z) and a cusp form of weight k,
and from the Fourier expansion (13) we see that the coefficient of Gy, in this
decomposition equals —2k/ By, since the constant term Rg(0) of O¢ equals 1.
(The only vector of length 0 is the zero vector.) Now Proposition 8 implies the
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Beweis. Wegen des Lemmas darf man umordnen. In ¢) verwende man zusitzlich
Teil (v) des Aquivalenz—Satzes 1.1. O

Damit sind die Theta Nullwerte O(7; S) Klasseninvarianten im Sinne von 1.4(5).
Fiir S € Pos (n;R) und T’ € Pos (m; R) definiert man die direkte Summe durch

S 0

(3) S®T = (0 7

) € Pos (n 4+ m; R).

Man schreibt g = (§) € Z"*™ mit a € Z", b € Z™ und erhiilt sofort

(4) O(r;SeT)=0(r;5)-0(r;T).

Ist S € Pos(n;Z) := Pos (n; R) N Mat(n; Z), so gilt offenbar S[g] € Z fiir alle
g € Z". Die Definition impliziert damit

(5) O(t+2;:9)=0(r;5), 7eH.

Mit einer Umordnung erhélt man die FOURIER Entwicklung (vgl. 1.4)

(6) o(r;S) = i H(S,m) - e™™ | 7 e H,

m=0
wobei natiirlich £(5,0) = 1.

2. Beziehungen zu Gittern. In diesem Abschnitt erliutern wir die zu 1
dquivalente Moglichkeit, Theta Reihen mit Hilfe von Gittern einzufiihren. Sei
V ein reeller Vektorraum der Dimension n < co. Eine Teilmenge G von V' heifst
ein Gitter in V', wenn es linear unabhéingige ¢g,...,g, € V gibt mit

(1) G:Zgl+...Zgn.

J1,- -+, g nennt man eine Basis des Gitters G. Man vergleiche auch mit der
Charakterisierung in Bemerkung 1.1.3. Ist nun o eine positiv definite Biline-
arform auf V, d.h. (V,0) ein euklidischer Vektorraum, so definiert man die
Theta-Reihe zum Gitter G durch

(2) Og(7) = ™79 | e H.
geG

Lemma. Sei (V,0) ein euklidischer Vektorraum und G = Zg, + ..., +Zgn ein
Gitter in V. Bezeichnet S = (0(g,,g,)) die GRAM-Matriz zur Basis g1, .. ., gn,
so gilt

Oc(T) =0(7;S)  fir alle 7€ H.

Beweis. Fiir g = v191 + -+ + Yngn € G definiert man h = (y,...,7,)t € Z"
und erhalt aus der Bilinearitit von o

o(g,9) = Sh]. O
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Ist umgekehrt ein S € Pos (n;R) gegeben, so betrachte man den R™ mit der
durch S gegebenen, positiv definiten Bilinearform als euklidischen Vektorraum.
Dann gilt

O(1;5) = Ozn(r) fiir alle 7€ H.

Bemerkungen. Sei G ein Gitter mit der Basis (1). In Analogie zum Basis
Lemma 1.1.6 kann man zeigen, dass hq, ..., h, aus V genau dann eine Basis von
G bilden, wenn es ein U = (u,,,) € GL(n;Z) gibt mit

n
h, = E UG » V=1,...,m.
p=1

Proposition 1c) besagt nun gerade die Unabhéngigkeit von der Wahl der Basis
im Lemma.

3. Die Theta—Transformationsformel. Als wesentliches Hilfsmittel zum Be-
weis der Transformationsformel ben6tigt man den

Satz von der FOURIER-Entwicklung. Sei ¢ : C* — C holomorph und in
jeder Komponente periodisch mit der Periode 1, d. h.

olw+g)=p(w) firale geZ".

Dann besitzt ¢ eine abolut und lokal gleichmdfig konvergente FOURIER FEnt-
wicklung der Form

(1) p(w) = Z cp, - X,

hezn
wobei die FOURIER—-Koeffizienten
(2) e = / Pz +&) - e PO
[0
unabhdngig von z € C" sind.
Beweis. Wir verwenden eine Induktion nach n, wobei der Fall n = 1 auf-

grund der klassischen Theorie bekannt ist (vgl. R. REMMERT, G. SCHUMACHER
[2002], 12.3.4). Sei also n > 1 und

() () =) ()

Fiir festes w,, € Cist w' — @(w) holomorph. Nach der Induktionsvoraussetzung
existiert eine absolut konvergente FOURIER-Entwicklung

4,0(10) — E Ch’(wn) . eQﬂih'tw"
h'ezn—1
/ /
c;/(w ) _ / © z +£ .6727rih“(z/+§’)d§/‘
13 n wﬂ
[[0}1]]7;—1
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Mit ¢ ist dann auch ¢, holomorph (vgl. R. REMMERT [1995], 8.2.2) und peri-
odisch mit der Periode 1. Aus der klassischen Theorie erhilt man eine FOURIER—
Entwicklung

Ch’(wn) = Z ch - e%’ihnu;n7
hn€Z
c, = / ch’(zn + gn) 3 e*?ﬂ'ihn(z,ﬂrg")dgn

[0.1]

oz +€) - e 2N EFOge | g,

[0,1] [o,1]»—1

Da der Integrand stetig ist, erhélt man (2) mit dem Satz von FUBINI (vgl. W.
WALTER [1992; II], 9.18) und

<p(w) _ Z <Z cn - eQm‘}ﬁw) )
Wezn-1 \hn€Z
Sei nun R > 0 und
M = max{|p(w)| ; |lw;| <2R+1,j=1,...,n}.
Fiir h € Z" sei z = —i2R(sgn hy,...,sgnh,,)", also
h'z = —i2R(|hi| + ... + |ha]).
Mit diesem z folgt aus (2) fiir jw;] <R, j=1,...,n

‘Ch . e2m’htw| < |Ch| . 627r(|h1w1|+m+\hnwn\)

< M - 6—477R(\h1|+..4+\hn|)d5 . 6277R(\h1|+..4+\h7,,|)
H071H7l

- M- 6727TR(‘h1|+-~+|hn|)

Daraus ergibt sich sofort die absolute und lokal gleichmifige Konvergenz der
Reihe (1), denn man hat

Z o2 R\ l+ .+ |Anl) _ (1 te " )
1 — e 27R :

hezn O

Damit kommen wir zu der angekiindigten

Theta—Transformationsformel. Fir S € Pos(n;R), p,q € C"* und 7 € H
gilt
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(3)  Ogp(—1/7iS7Y) = (7/i)"? Vet S 72 0, (7 ).

Dabei ist fiir ungerades n der Zweig der Wurzel zu wéhlen, der fiir positive
Argumente positiv ist.

Beweis. Aufgrund von Proposition 1 und Lemma 1 koénnen wir den Satz an-
wenden auf

@(p) := Opq(iy; ).

Wegen der absoluten Konvergenz des Integrals erhélt man fiir h € Z"

- . t o it
E : e wyS[g+p]+2mi(g+p)iq | e~ 2mih pdp

Cp =
[0.1]» geZ™
- Z e~ mSlo+pl+2milgtn)(a=h) gy,
geEZ™ [0.1]"
= /efﬂyS[pH?ﬂipt(qfh)dp
RTL

o) A= / ¢~ mSli(S) (=] gy

Rn

Man wihlt nach dem Aquivalenz—Satz 1.3 ein W € GL(n;R) mit yS[W] = E
und substitutiert p = Wu, also dp = |det W|du = y~/?(det S)~"/2du. Mit
W (h — q) = v ergibt sich

/e—wys[p+i(y5)_1(h—q)]dp _ |det W| . /e—n(u+z‘v)t(u+w)du
Rn Rn

o0
n

— 2 (det )2 / e gy
=1 7

Mit Hilfe des Residuensatzes erkennt man, dass hier jedes einzelne Integral
gleich 1 ist (vgl. R. REMMERT, G. SCHUMACHER [2002], 12.4.3). Damit erhilt
man

yn/2 Vet S - ep,q(i?ﬁ S) _ Z efﬂ(yS)—l[h*Q] . p2mihtp _ 2miq'p G—q,p(i/?ﬁ Sfl).

hez™

Also gilt (3) fiir alle 7 = 4y, y > 0. Weil beide Seiten von (3) holomorph in
7 € H sind, folgt die Behauptung mit dem Identititssatz. O

Den Spezialfall der Theta Nullwerte, also p = ¢ = 0, notieren wir als

Korollar A. Fir S € Pos (n;R) und 7 € H gilt

O(=1/7;87Y) = (r/i)"? - Vdet S - ©(7; S).
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Einen weiteren wichtigen Spezialfall formulieren wir in
Korollar B. Ist S € Pos (n;Z) mit det S =1, so gilt
O (=1/7;8) = (r/i)"*-O(r;S) fiir alle T € H.

Beweis. Es gilt S7'[S] = S mit S € GL(n;Z). Nun verwendet man Korollar A
und Proposition 1c). O

Bemerkungen. a) Sei G von der Form 2(1) ein Gitter in dem euklidischen
Vektorraum (V, o). Bis auf Normierung des Mafkes ist das Volumen einer Fun-
damentalmasche

{rgr+.. . +9mgn; 0<%, <1, 1<v<n}

von G gleich v/det S, wobei S die zugehorige GRAM-Matrix ist. Wir verwenden
dafiir die Abkiirzung vol(G). Die Menge

G ={veV;ol,g) €Z firale g€ G}

ist wiederum ein Gitter, das zu G duale Gitter (beziiglich ). Wihlt man
hi,...h, € V mit o(h;,g;) = 6, so ist hy,..., h, eine Basis von G und
S~ die zugehorige GRAM Matrix. Damit kann man Korollar A auch #iquiva-
lent formulieren als

Ogo (—1/7) = (7/i)"? - vol(G) - O (7).

Im Fall G = G° nennen wir G selbstdual und haben dann auch vol(G) = 1.

b) In der Bezeichnung E(2) gilt ©, ,(7; S) = ¥(75, p, ¢). Damit wird (3) zu einem
Spezialfall von E(3). Andererseits hat man E(3) fiir alle Z =4S, S € Pos (n; R),
in (3) bewiesen, so dass die Aussage mit dem Identitétssatz fiir Z folgt.

4. Gerade Matrizen. Eine Matrix S € Sym (n; R) heift gerade, wenn
(1) Slg]l = ¢'Sg € 2Z  fiir alle g € Z™.
Eine Charakterisierung gibt das

Lemma. Fir eine Matriz S = (s,,) € Sym (n;R) sind dquivalent:
(i) S ist gerade.

(i) s,, €2Z firv=1,...,n und s,, € Z fir alle v # L.

(iii) Sp(ST) € 2Z fiir alle T € Sym (n;Z).

Beweis. (i) = (ii): W&hlt man fiir g den v ten Einheitsvektor e, in (1), so
ergibt sich s, € 2Z. Fiir v # u folgt dann aus

Sle, + eu] = sy + Spp + 25, € 27

sofort s, € Z.
(i) = (iii): Schreibt man T = (t,,), so berechnet man
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SP(ST) = > Subw +2 Y Suuty € 2Z.

1<v<n 1<v<u<n
(i) = (i): Ist g € Z™, so folgt T = gg' € Sym (n;Z) und es gilt

Sp(ST) = Slgl. O

Insbesondere folgert man sofort
(2) S gerade, G € Mat(n,m;Z) = S[G] gerade.

Nun betrachten wir Theta Reihen zu geraden, positiv definiten Matrizen. Als
unmittelbare Folgerung aus (1) und 1(6) notieren wir die

Proposition. Sei S € Pos (n;Z) gerade. Dann gilt:
O(t+1;5)=0(r;5) fir alle 7€ H.
O(+; S) besitzt die FOURTER-Entwicklung
O(r;S) = Z 1(S,2m) - ¥ € H.
m=0

5. Gerade, unimodulare, positiv definite Matrizen. In diesem Abschnitt
beschreiben wir notwendige und hinreichende Bedingungen an das Format fiir
die Existenz solcher Matrizen. Diese erhilt man mit Hilfe der zugehorigen
Theta Reihen.

Satz. Ist S € Pos (n;Z) gerade und unimodular, dann ist n durch 8 teilbar.

Beweis. Fiir 7 € H definiert man

T—1 1 T
T =——, 72:T1+1: s T3 = —— = 5
T T To 1—7
1
w=713+1= , 3=——=T—1, =T+1=1T
1—71 T4

Nun wendet man Proposition 4 und Korollar 3B an und erhilt
O(7;5) = O(r5; ) = (/i) - (1o /i)' - (14/8)""* - ©(7; 9).

Wihlt man nun 7 = ¢ und benutzt die Tatsache, dass O(i; S) eine positive reelle
Zahl ist, so folgt
.\ n/2
1 .
1= (1+4)"? <—2H> = e,

wenn man beriicksichtigt, dass man den Zweig der Wurzel zu wihlen hat, der
fiir positive Argumente positiv ist. Folglich ist n durch 8 teilbar. |

Fiir n = 8 geben wir nun ein Beispiel an.



