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♠ The Kac–Wakimoto Conjecture

For any two natural numbers m and n, denote by ∆m(n) the number of
representations of n as a sum of m triangular numbers (numbers of the form
a(a− 1)/2 with a integral). Since 8a(a− 1)/2+1 = (2a− 1)2, this can also be
written as the number rodd

m (8n+m) of representations of 8n+m as a sum ofm
odd squares. As part of an investigation in the theory of affine superalgebras,
Kac and Wakimoto were led to conjecture the formula

∆4s2(n) =
∑

r1, a1, ..., rs, as ∈Nodd

r1a1+···+rsas = 2n+s2

Ps(a1, . . . , as) (35)

for m of the form 4s2 (and a similar formula for m of the form 4s(s + 1) ),
where Nodd = {1, 3, 5, . . .} and Ps is the polynomial

Ps(a1, . . . , as) =

∏

i ai ·
∏

i<j

(

a2
i − a2

j

)2

4s(s−1) s!
∏2s−1

j=1 j!
.

Two proofs of this were subsequently given, one by S. Milne using elliptic func-
tions and one by myself using modular forms. Milne’s proof is very ingenious,
with a number of other interesting identities appearing along the way, but is
quite involved. The modular proof is much simpler. One first notes that, Ps

being a homogeneous polynomial of degree 2s2−s and odd in each argument,
the right-hand side of (35) is the coefficient of q2n+s2

in a function F (z) which
is a linear combination of products gh1

(z) · · · ghs
(z) with h1 + · · · + hs = s2,

where gh(z) =
∑

r, a∈Nodd
a2h−1qra (h ≥ 1). Since gh is a modular form (Eisen-

stein series) of weight 2h on Γ0(4), this function F is a modular form of weight

2s2 on the same group. Moreover, its Fourier expansion belongs to qs2

Q[[q2]]
(because Ps(a1, . . . , as) vanishes if any two ai are equal, and the smallest
value of r1a1 + · · · + rsas with all ri and ai in Nodd and all ai distinct is
1 + 3 + · · ·+ 2s− 1 = s2), and from the formula given in §1 for the number of
zeros of a modular form we find that this property characterizes F (z) uniquely

in M2s2(Γ0(4)) up to a scalar factor. But θF (z)4s2

has the same property, so
the two functions must be proportional. This proves (35) up to a scalar factor,
easily determined by setting n = 0. ♥

3.2 Theta Series in Many Variables

We now consider quadratic forms in an arbitrary number m of variables. Let
Q : Zm → Z be a positive definite quadratic form which takes integral values
on Zm. We associate to Q the theta series

ΘQ(z) =
∑

x1,...,xm∈Z

qQ(x1,...,xm) =
∞
∑

n=0

RQ(n) qn , (36)
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where of course q = e2πiz as usual and RQ(n) ∈ Z≥0 denotes the number of
representations of n by Q, i.e., the number of vectors x ∈ Zm with Q(x) = n.
The basic statement is that ΘQ is always a modular form of weight m/2.
In the case of even m we can be more precise about the modular transfor-
mation behavior, since then we are in the realm of modular forms of in-
tegral weight where we have given complete definitions of what modularity
means. The quadratic form Q(x) is a linear combination of products xixj with
1 ≤ i, j ≤ m. Since xixj = xjxi, we can write Q(x) uniquely as

Q(x) =
1

2
xtAx =

1

2

m
∑

i,j=1

aijxixj , (37)

where A = (aij)1≤i,j≤m is a symmetric m×m matrix and the factor 1/2 has
been inserted to avoid counting each term twice. The integrality of Q on Zm

is then equivalent to the statement that the symmetric matrix A has integral
elements and that its diagonal elements aii are even. Such an A is called an
even integral matrix. Since we want Q(x) > 0 for x 6= 0, the matrix A must
be positive definite. This implies that detA > 0. Hence A is non-singular
and A−1 exists and belongs to Mm(Q). The level of Q is then defined as the
smallest positive integer N = NQ such that NA

−1 is again an even integral
matrix. We also have the discriminant ∆ = ∆Q of A, defined as (−1)m detA.
It is always congruent to 0 or 1 modulo 4, so there is an associated character
(Kronecker symbol) χ∆, which is the unique Dirichlet character modulo N

satisyfing χ∆(p) =

(

∆

p

)

(Legendre symbol) for any odd prime p ∤ N . (The

character χ∆ in the special cases ∆ = −4, 12 and 8 already occurred in §2.2
(eq. (15)) and §3.1.) The precise description of the modular behavior of ΘQ

for m ∈ 2Z is then:

Theorem (Hecke, Schoenberg). Let Q : Z2k → Z be a positive definite
integer-valued form in 2k variables of level N and discriminant ∆. Then ΘQ

is a modular form on Γ0(N) of weight k and character χ∆, i.e., we have
ΘQ

(

az+b
cz+d

)

= χ∆(a) (cz + d)k ΘQ(z) for all z ∈ H and
(

a b
c d

)

∈ Γ0(N).

The proof, as in the unary case, relies essentially on the Poisson sum-
mation formula, which gives the identity ΘQ(−1/Nz) = Nk/2(z/i)k ΘQ∗(z),
where Q∗(x) is the quadratic form associated to NA−1, but finding the pre-
cise modular behavior requires quite a lot of work. One can also in principle
reduce the higher rank case to the one-variable case by using the fact that
every quadratic form is diagonalizable over Q, so that the sum in (36) can
be broken up into finitely many sub-sums over sublattices or translated sub-
lattices of Zm on which Q(x1, . . . , xm) can be written as a linear combination
of m squares.
There is another language for quadratic forms which is often more conve-

nient, the language of lattices. From this point of view, a quadratic form is no
longer a homogeneous quadratic polynomial in m variables, but a function Q
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from a free Z-module Λ of rank m to Z such that the associated scalar prod-
uct (x, y) = Q(x + y) −Q(x) −Q(y) (x, y ∈ Λ) is bilinear. Of course we can
always choose a Z-basis of Λ, in which case Λ is identified with Zm and Q
is described in terms of a symmetric matrix A as in (37), the scalar product
being given by (x, y) = xtAy, but often the basis-free language is more conve-
nient. In terms of the scalar product, we have a length function ‖x‖2 = (x, x)
(actually this is the square of the length, but one often says simply “length”
for convenience) and Q(x) = 1

2‖x‖
2, so that the integer-valued case we are

considering corresponds to lattices in which all vectors have even length. One
often chooses the lattice Λ inside the euclidean space Rm with its standard
length function (x, x) = ‖x‖2 = x2

1 + · · · + x2
m; in this case the square root

of detA is equal to the volume of the quotient Rm/Λ, i.e., to the volume of
a fundamental domain for the action by translation of the lattice Λ on Rm. In
the case when this volume is 1, i.e., when Λ ∈ Rm has the same covolume as
Zm, the lattice is called unimodular. Let us look at this case in more detail.

♠ Invariants of Even Unimodular Lattices

If the matrix A in (37) is even and unimodular, then the above theorem tells
us that the theta series ΘQ associated to Q is a modular form on the full
modular group. This has many consequences.

Proposition 12. Let Q : Zm → Z be a positive definite even unimodular
quadratic form in m variables. Then

(i) the rank m is divisible by 8, and
(ii)the number of representations of n ∈ N by Q is given for large n by the

formula

RQ(n) = −
2k

Bk
σk−1(n) + O

(

nk/2
)

(n→∞) , (38)

where m = 2k and Bk denotes the kth Bernoulli number.

Proof. For the first part it is enough to show thatm cannot be an odd multiple
of 4, since if m is either odd or twice an odd number then 4m or 2m is an
odd multiple of 4 and we can apply this special case to the quadratic form
Q⊕Q⊕Q⊕Q or Q⊕Q, respectively. So we can assume that m = 2k with
k even and must show that k is divisible by 4 and that (38) holds. By the
theorem above, the theta series ΘQ is a modular form of weight k on the full
modular group Γ1 = SL(2,Z) (necessarily with trivial character, since there
are no non-trivial Dirichlet characters modulo 1). By the results of Section 2,
this modular form is a linear combination ofGk(z) and a cusp form of weight k,
and from the Fourier expansion (13) we see that the coefficient of Gk in this
decomposition equals −2k/Bk, since the constant term RQ(0) of ΘQ equals 1.
(The only vector of length 0 is the zero vector.) Now Proposition 8 implies the
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∑
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Θ(τ ; S) =

∞
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m=0

♯(S, 2m) · e2πimτ , τ ∈ H.
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τ1 = −1

τ
, τ2 = τ1 + 1 =

τ − 1

τ
, τ3 = − 1

τ2

=
τ
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1− τ
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τ4

= τ − 1 , τ6 = τ5 + 1 = τ.
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Θ(τ ; S) = Θ(τ6; S) = (τ/i)n/2 · (τ2/i)
n/2 · (τ4/i)

n/2 ·Θ(τ ; S).
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