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b) Ist k > 1 und g € Z™, g # 0(mod 2), mit S[g] = 0(mod 4), so gibt es genau a(2,k — 1)
Linksnebenklassen HU,, mit den Eigenschaften

|det H| = 2%, H'g € Z", so dass 1S[H] gerade ist.

6) Man leite das Analogon von Lemma 3 und Korollar 3 fiir p = 2 her.
7) 4(1) gilt auch fiir p = 2.
8) Fiir jede Primzahl p gilt #(Ss,pSs) = 2(p + 1)(p*> + 1)(p> + 1) - #(Ss, Ss)-

§ 4*. Harmonische Polynome und quadratische
Formen hoherer Stufe

In diesem Paragrafen werden zunéchst die harmonischen Polynome beschrieben.
Sie dienen als Hilfsmittel, um aus Theta Reihen Spitzenformen zu gewinnen.
Dariiber hinaus wird gezeigt, dass Theta Reihen zu beliebigen rationalen positiv
definiten quadratischen Formen stets Modulformen zu Kongruenzuntergruppen
liefern.

1. Harmonische Polynome. Sind Xi,..., X,, Unbestimmte iiber C, so ver-
wenden wir fiir o € Nj die Abkiirzungen
X1 aq
1) X=1| |, a=] |, X =X"...- X2, al:=aq!- ... ).
X, o,

Fiir r € Ny bezeichne P den C-Vektorraum der homogenen Polynome vom
Grad r in C[Xy, ..., X,], also mit (1)

(2) f]’g”)—{P(X)— Zp(a)X“; p(a) € C, oz1+...+ozn—r}.

aeNY

Bekanntlich gilt dann

r

(3) dirn?ﬁ")—ﬁ{aENg;a1+...+an—r}—(n+r_1>,

Lemma. {(h'X)" ; h € R"} ist ein Erzeugendensystem von P,

Beweis. In den Standardbezeichnungen (1) und (2) definieren wir ein Skalar-
produkt auf P durch

PO),QX)Y = 3 at-ple) -al@) = P ( (3% %) ) Q).
(r0.000) ( )

a€eNY

Insbesondere gilt dann fiir alle P(X) € P, h e R"

<P(X), (htX)T> =1l P(h).
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Sei U der von (h'X)", h € R, aufgespannte C Unterraum von P, Dann gilt
fiir jedes P(X) € Ut
P(h)=0 firalle h e R".

Eine Induktion nach n zeigt zusammen mit dem Identitdtsatz sofort P = 0,
also U = P O
Wir nennen P(X) € P harmonisch, wenn

0* 0?
st ax

A ist also der iibliche LAPLACE Operator und

AP(X)=0, A=

H = {P(X) € P™; AP(X) =0}
ein Unterraum von fPﬁ"). Offenbar gilt
H =C, H"V =CX, +...+CX, , HV = {0} fiir r > 2.
Eine Beschreibung von f}dn) liefert nun die

Proposition. Sein > 2, r > 1. Dann ist

I(P(X))
xX,=0  0X,

¢:H, — PO PV Pp(X) ((P(X)

Xn—0> ’

Beweis. Sei X = (X1,..., X, 1) Wir schreiben P(X) € P in der Form

T

P(x) =Y P(X)X], P(X)eP" .
j=0

etn Isomorphismus der Vektorraume.

Wegen AP, = AP,_; = 0 folgt sofort

APC) = 3 (ARD) XL+ D - DB(EIXE
= Y[R+ G420+ DA X

Also ist P genau dann harmonisch, wenn
~ ~1 ~
Pio(X)= 0 AP

o (G+2)(+1)
und Py € fP&”‘”, P e f]’,(ﬁ_ll) beliebig sind. Die Behauptung folgt nun mit

~ ~.  0P(X)
Xp=0' hX) = 0X, |Ix.=0 O
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Wegen (3) erhélt man direkt das

Korollar. Fiirn > 2, r > 1 gilt

dimﬂfﬁ”): <n+r—2>+<n+r—3).
r r—1

Wir kommen nun zu einer niitzlichen Beschreibung der harmonischen Polyno-
me.

Satz. Firn > 2 und r € Ny sind dquivalent:
(i) P(X) e H™.

(il) P(X) ist eine endliche Linearkombination diber C von Polynomen der
Form (u'X)", wobei u € C" mit u'u = 0.

Beweis. (i) = (i): Man berechnet direkt
AW X) =r(r—1)-vlu- (u'X)"2=0, also (u'X)" € H™,

(i) = (ii): Sei U der von (uv'X)", u € C", v'u = 0, aufgespannte Unterraum
von H™. Fiir h € R sei ~v = +ivhth. Dann gilt

u= C;) eC”, vu=0, o((u'X))= <(ht )N()T,'yr(ht)w()rl)
in der Bezeichnung der Proposition. Also enthélt ¢(U) die Elemente
(" X)7,0), (0,(g" X)), hyg e R,
und nach dem Lemma ein Erzeugendensystem von PV x TPSSI). Aus
o) = P x P
folgt U = H™ mit der Proposition. O
2. Theta Reihen zu harmonischen Polynomen. Fiir S € Pos(n;R) sei

51/2 die eindeutig bestimmte Quadratwurzel nach 1.3(9). Ist P(X) € H", so
definieren wir die Theta Reihe in S zum harmonischen Polynom P(X) durch

(1) O(r; S, P) ==Y P(SY%g) emimslol

geZ™

Die Reihe der Absolutbetrige in (1) wird kompakt gleichméfig in (7,5) be-
schriankt durch

c- z:(gtg)r/2 e <00, C>0, > 0.

geZN
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Also ist O(+; S, P) holomorph in 7 € H. Wegen
Ooq(755) = Z emirSlal+2migta
gezn

erhalten wir auch noch

() O(r;8,P) = (2mi) " P(522) 00,(rs)| 2= (- f’)t.

o Bai? " Ban

Satz. S € Pos(n;Z) gerade und unimodular sowie P(X) € H" mit geradem
r > 0. Dann gilt
055, P) € Srpupo

mit der FOURIER FEntwicklung

o0

(3) O(r; S, P) = Z Z P(SY2g) | - e2mimm.

m=1 \ geD(S,2m)

Beweis. Man erhilt (3) durch eine Umordnung in (1) mit P(0) = 0. Dariiber
hinaus gilt offenbar ©(7 4 1; S, P) = O(7; S, P). Mit Satz 2.5 ergibt sich aus (2)
und der Theta—Transformati-onsformel 2.3(3) ergibt sich

O(-1/7:8,P) = (2ni) - P(SY22) - 004(~1/75)

q=0

= (2m)™"- P(Sl/Qaiq) 720, 0(m; 57

q=0 '
Fiir v € C" mit v'u = 0 gilt
2
(utsl/QaQ) eﬂ'z‘rS lg+4]
q

(2mit) - (u’fsl/?a@q) (Y2 571 (g + ) emmS ok

= (27m'7 cutSY? . STISY 2y 4 (2mir - utSYV2 ST g + q))Q) TS ot
(27Ti7’)2 . (ut51/2s—l(g + q))2 . em‘-rS_l[g+q].
Fiir » € N ergibt eine Induktion

(utsuza%) TS ol — (9 (u'SY28 (g + q))T . gmimS M ota]
Mit Satz 1 folgt daraus

P(Sl/ZaQq)eﬂ'i‘rS_l[g-Fq] |q:0

(2miT)" - P(SY25 (g + q)) - emiTS T lgtd]
(2mir)" - P(SY/2 . 8 1g) . em7SIST"dl,

q=0
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Daraus erhiilt man mit der Substitution h = S™'g

@(_1/7_; S, P) _ Tr+n/2 . Z P(S1/2 . Sflg) . em”rS[Sflg]
geEZ™
= 72.9(r; S, P). O

Nun betrachte man speziell fiir u € C"
P(X) = (u'X)? - Lty X'X € Y.

Setzt man jetzt u = S'/2v, v € C, so folgt mit diesem P das

Korollar A. Fiir jedes gerade, unimodulare S € Pos (n; Z) und v € C™ gilt

O(7;8,P) = Y _((v'Sg)* = S[v]- Slg)) - ™™ € Sy -

geZ™

Fiir n = 8,16, 24 gilt ©(+; S, P) = 0 und fir alle m € N

> (v'Sg)* =1 S[u] - 4(S,2m) .

geD(S,2m)

Beweis. Der Zusatz folgt aus dem Satz sowie S¢ = S;p = Sy = {0} gemif
111.4.2. O

Nun betrachten wir speziell S = Sg aus 2.5(1).

Korollar B. Fiir jedes v € C® gilt

Y (v'Ss9)® — 135 (v'Ssv)*(g'Ssg)") - €77 = ¢, - A*(7)

gez®

Cp = Z (v'Sgg)® | — 30(v'Sgv)? .

969(58,2)
Beweis. Fiir u € C® verifiziert man leicht P(X) € f]{ég) fiir
P(X) = (W'X)*=Z(u'v) (u'X)" (X'X) + f5(u'u) (u'X)" (X'X)?

T(u'u)? - (u'X)” - (X'X)? + s (ufu)t - (XTX)*

T 96

Wegen S5 = CA* folgt mit dem Satz

O(ri S5, P)=c, A(7), c= Y. P(S{g).

9€D(Ss,2)
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Nun betrachte man
QX)= (u'X)5— %(utu) (X))t (XEX) + %(utu)2 S(urX)? - (XEX)?
—&(utu)3 S(XtX)P e 5{((58),
QX) = (u'X) = Lutu) - (u'X)? - (X'X) + A(u'u)? - (X'X)? € HY
QUX) = (u'X)? — g(u'u) - (X'X) € 35",
Wegen Sg = Sg = S19 = {0} folgt O(+; Ss, @) = 0 fiir diese ). Aus der FOURIER-
Entwicklung in Korollar A ergibt sich dann auch
Z(Sg[g])TQ(Sl/Qg) ™Sl =0 fiir 7 € Ny,
gez8
Durch Bildung geeigneter Linearkombinationen folgt schliefsich
O(r: 5, P) = > ('S 9)" = ks (u'u)*(9"Ssg)") - 77540,

geZ®

Nun setzt man u = S?v und benutzt #(Ss, 2) = 240 gemif Korollar 2.6A. O

Wiéhlt man speziell v € D(Sg, 2), so kann man zeigen, dass

> (v'Ssg)® =624

9€D(Ss,2)

gilt, also ¢, = 144 in Korollar B. Dann ergibt ein Vergleich der FOURIER—
Koeffizienten in Korollar B zusammen mit Korollar 2.6A das

Korollar C. Ist v € D(Ss,2), so gilt fir alle m € N

Z (v'S3g)® | —480 - m* - o3(m) = 144 - 7(m) .

g€D(Ss,2m)

Bemerkungen a) Die Ergebnisse dieses Paragrafen gehen auf E. HECKE (Math.
Werke, 789-918) zuriick.

b) Korollar A ist ein wesentliches Hilfsmittel bei der Klassifikation der 24

dimensionalen, geraden, unimodularen Gitter durch B.B. VENKOV (vgl. J.H.
CoNwAY, N.J.A. SLOANE [1999], chap. 18).

3. Die Stufe einer geraden Matrix. Sei S € Sym(n;Z) gerade mit det S # 0.
Dann heift

(1) N :=min{g € N; ¢S~ gerade}

die Stufe von S. Wegen S~ € Sym(n;Q) existiert dieses N und NS~ ist
gerade. Die wesentlichen Eigenschaften formulieren wir in dem



