Analysis 1 Übungsblatt 8

Aufgabe 1: Bestimmen Sie den Konvergenzradius der folgenden Reihen.

(a)
$$\sum_{k=1}^{\infty} (-1)^k \frac{(n_5+1)^k}{k^7+n_7} z^k$$

(d)
$$\sum_{k=1}^{\infty} k^k z^k$$

(b)
$$\sum_{k=1}^{\infty} \frac{1}{(n_3+1)k+5} z^{k!}$$

(e)
$$\sum_{k=1}^{\infty} \frac{2 + \sin(k^2)}{k^2} z^k$$

(c)
$$\sum_{k=1}^{\infty} \frac{1}{k!} z^{(n_2+1)k}$$

Aufgabe 2: (a) Für welche $z \in \mathbb{C}$ konvergiert $\sum_{k=1}^{\infty} \frac{(|n_6-7|+1)^k}{k^2} z^k$?

(b) Für welche
$$z \in \mathbb{C}$$
 konvergiert $\sum_{k=1}^{\infty} \frac{1}{(|n_2-2|+2)^k + k^2} z^k$?

(c) Für welche
$$x \in \mathbb{R}$$
 konvergiert $\sum_{k=1}^{\infty} \frac{1}{k + n_4} x^k$?

Aufgabe 3: Beweisen oder widerlegen Sie:

(a)
$$\left(\sum_{n=0}^{\infty} z^n\right)^2 = \sum_{n=0}^{\infty} z^{2n}$$
 für alle $z \in \mathbb{C}$ mit $|z| < 1$.

(b)
$$\left(\sum_{n=0}^{\infty} z^n\right) \left(\sum_{n=0}^{\infty} (-z)^n\right) = \sum_{n=0}^{\infty} z^{2n}$$
 für alle $z \in \mathbb{C}$ mit $|z| < 1$.

Aufgabe 4: (a) Für welche $z \in \mathbb{C}$ konvergiert die folgende Reihe?

$$\sum_{k=1}^{\infty} \left(\frac{z-1}{z+1} \right)^k$$

(b) Berechnen Sie den Wert dieser Reihe, falls er existiert.