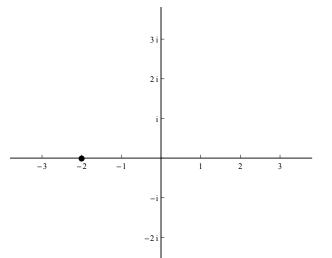
NAME:	Aufgabe 1	

Für welche $z \in \mathbb{C}$ gilt $e^z = -1$?

Betrachten Sie die Gleichung $z^5+32=0$ für $z\in\mathbb{C}.$

- (a) Zeigen Sie, dass für jede Lösung gilt, dass $|z|=2. \label{eq:zeigen}$
- (b) Schreiben Sie die Lösungen in der Form


$$z = r \exp(i\varphi)$$

mit $r \in \mathbb{R}$ und $\varphi \in [0, 2\pi)$ und skizzieren Sie die Lösungen in der Gauß-Ebene.

(c) Berechnen Sie das Polynom

$$p(z) = \frac{z^5 + 32}{z + 2}.$$

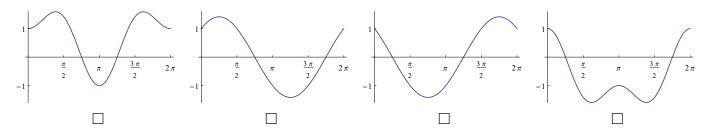
(d) Welche Lösungen in $z \in \mathbb{C}$ hat p(z) = 0?

T		_		
	Λ	1 /	$\mathbf{r} \cdot$	
\perp N	\mathcal{H}	IV	LC.	

Aufgabe 3

- (a) Für welche $x \in \mathbb{R}$ gilt $\arcsin(\sin(x)) = x$?
- (b) Für welche $y \in \mathbb{R}$ gilt $\sin(\arcsin(y)) = y$?

Begründen Sie Ihre Antworten.

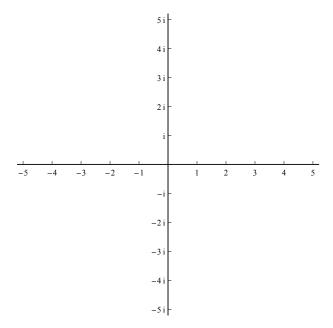

(a) Geben Sie die Definition für:

Die Funktion $f: \mathbb{R} \to \mathbb{R}$ ist differenzierbar an der Stelle a.

(b) Ist die Funktion $f: \mathbb{R} \to \mathbb{R}$, definiert durch

$$f(x) = \begin{cases} \frac{e^x - 1 - x}{x} & \text{für } x \neq 0, \\ 0 & \text{für } x = 0, \end{cases}$$

differenzierbar in 0?


Begründen Sie Ihre Wahl.

(b) Berechnen Sie das Maximum von f auf $[0, 2\pi]$.

Bestimmen Sie für welche $z\in\mathbb{C}$ die Funktion fdurch

$$f(z) = \sum_{k=1}^{\infty} \left(\frac{z}{\arctan(k)}\right)^k$$

wohldefiniert ist und geben Sie eine Skizze dieser Zahlen in der Gauß-Ebene.

TAT				
	Λ	Λ	ΙĿΙ	•
IN	\neg	$\mathbf{I}\mathbf{V}$	l l' <i>l</i>	•

Aufgabe 7

Berechnen Sie $\int_{1}^{2} x \ln \left(1 + \frac{1}{x} \right) dx$.

T		_			
	Λ	Λ	/ [\mathbf{r} .	
\perp N	$\boldsymbol{\Box}$		/1	Ľ.	

Wir betrachten

$$\int_0^\infty \frac{1}{x\sqrt{x} + \sqrt{x}} dx$$

- (a) Zeigen Sie, dass dieses Integral wohldefiniert ist.
- (b) Berechnen Sie dieses Integral.