Analysis 1 - Übungsblatt 12

Die Lösungen müssen in den Übungsbriefkasten Analysis 1 (im Studierendenarbeitsraum, Mathematisches Institut, 3. Etage) geworfen werden. Abgabeschluss ist Donnerstag, 12 Uhr.

Aufgabe 1: Zeigen Sie die folgenden Ungleichungen:

- (a) Für x > 1 gilt $1 \frac{1}{x} < \ln x < x 1$.
- (b) Für $\alpha \in [0, \frac{\pi}{2})$ gilt $\alpha \le \tan(\alpha)$.

Aufgabe 2 (4 Punkte): Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ differenzierbar. Zeigen Sie, dass f genau dann konvex ist, wenn gilt:

$$f(y) \ge f(x) + f'(x)(y - x)$$
 für alle $x, y \in I$.

Aufgabe 3: Sei $I \subset \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig. Beweisen Sie:

- (a) f ist konvex in I \iff $\forall x, y \in I: f(\frac{x+y}{2}) \le \frac{f(x)+f(y)}{2}$.
- (b) f konvex und streng monoton wachsend $\implies (-f^{inv}): f(I) \to \mathbb{R}$ ist konvex.

Aufgabe 4: Zeigen Sie mit Hilfe des Mittelwertsatzes:

- (a) $|\cos(e^x) \cos(e^y)| \le |x y| \text{ für } x, y \le 0,$
- (b) $|\ln(1+x)| \le \frac{x}{\sqrt{1+x}}$ für x > 0.

Hinweis zu (b): Betrachten Sie die Funktion $f(t) = \ln(1+t) - \frac{t}{\sqrt{1+t}}$ im Intervall [0,x].

Aufgabe 5: Seien a, b > 0 und $b \neq 1$. Berechnen Sie die folgenden Grenzwerte:

(a) $\lim_{x\downarrow 0} x^a \ln(x)$

(b) $\lim_{x \to \infty} \frac{1}{x^a} \ln(x)$

(c) $\lim_{x\downarrow 0} x^x$

(d) $\lim_{x \to b} \frac{x^b - b^x}{b^x - b^b}$

Aufgabe 6 (4 Punkte): Zeigen Sie, dass die Ungleichungen

$$x - \frac{1}{2}x^2 + \frac{1}{3}\left(\frac{x}{1+x}\right)^3 \le \ln(1+x) \le x - \frac{1}{2}x^2 + \frac{1}{3}x^3$$

für $0 \le x < \infty$ gelten.

Hinweis: Untersuchen Sie die Taylor-Entwicklung von $\ln(1+x)$ um den Punkt a=0.

Aufgabe 7: Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ konvex und $\lambda_1, \ldots, \lambda_n \in \mathbb{R}^+$ mit $\lambda_1 + \ldots + \lambda_n = 1$. Zeigen Sie, dass

$$f(\lambda_1 x_1 + \dots \lambda_n x_n) \le \lambda_1 f(x_1) + \dots \lambda_n f(x_n)$$

für alle $x_1, \ldots, x_n \in I$ gilt.

Aufgabe 8: Sei $\varepsilon > 0$, $f: (-\varepsilon, 1+\varepsilon) \to \mathbb{R}$ differenzierbar.

- (a) Es gelte $|f(x)| + |f'(x)| \neq 0$. Zeigen Sie, dass f nur endlich viele Nullstellen in [0,1] haben kann.
- (b) f' sei stetig, f(0) = 0 und $|f'(x)| \le \lambda |f(x)|$. Zeigen Sie, dass f(x) = 0 in [0, 1].

Aufgabe 9: Sei $f: \mathbb{R}^+ \to \mathbb{R}^+$ stetig und bijektiv.

- (a) Zeigen Sie, dass f^{inv} genau dann streng monoton steigend ist, wenn f streng monoton steigend ist.
- (b) Zeigen Sie, dass es für jedes f ein $x \in \mathbb{R}^+$ gibt, so dass $f^{inv}(x) \neq \frac{1}{f(x)}$.

Aufgabe 10 (8 Punkte): Berechnen Sie die Grenzwerte

(a)
$$\lim_{x \to 0} \frac{\arccos(x) + \sin(x) - \frac{\pi}{2}}{x^3}$$

(b)
$$\lim_{x\to 0} \frac{\sqrt{1+x^2} - \cos(x)}{\sin(x)^2}$$

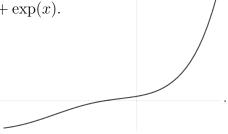
(c)
$$\lim_{x \downarrow 0} \frac{1 - \cos(\sqrt{x})}{\sin(x)}$$

(d)
$$\lim_{x \to \infty} x^2 \left(\arcsin\left(\frac{1}{x}\right) - \arcsin\left(\frac{1}{x+1}\right)\right)$$

Hinweis zu (d): Mittelwertsatz

Aufgabe 11 (4 Punkte): Sei $f(x) = x - \sin(x) + \exp(x)$.

- (a) Zeigen Sie, dass f injektiv ist.
- (b) Bestimmen Sie $f(\mathbb{R})$.
- (c) Berechnen Sie $(f^{inv})'(1)$.



Aufgabe 12: Wir betrachten die Funktionen $f:(0,\infty)\to\mathbb{R}$ und $g:(0,\infty)\to\mathbb{R}$, definiert durch

$$f(x) = \frac{1}{x} + \sin\left(\frac{1}{x}\right)\cos\left(\frac{1}{x}\right)$$
 und $g(x) = \left(\frac{1}{x} + \sin\left(\frac{1}{x}\right)\cos\left(\frac{1}{x}\right)\right)\exp\left(\sin\left(\frac{1}{x}\right)\right)$.

- (a) Zeigen Sie, dass $\lim_{x\downarrow 0} f(x) = \infty$ und $\lim_{x\downarrow 0} g(x) = \infty$.
- (b) Zeigen Sie, dass für $g'(x) \neq 0$ gilt, dass

$$\frac{f'(x)}{g'(x)} = \frac{2\cos\left(\frac{1}{x}\right)}{\exp\left(\sin\left(\frac{1}{x}\right)\right)} \left(\frac{1}{2\cos\left(\frac{1}{x}\right) + \left(\frac{1}{x} + \sin\left(\frac{1}{x}\right)\cos\left(\frac{1}{x}\right)\right)}\right).$$

- (c) Zeigen Sie, dass $\lim_{x\downarrow 0} \frac{2\cos\left(\frac{1}{x}\right)}{\exp\left(\sin\left(\frac{1}{x}\right)\right)} \left(\frac{1}{2\cos\left(\frac{1}{x}\right) + \left(\frac{1}{x} + \sin\left(\frac{1}{x}\right)\cos\left(\frac{1}{x}\right)\right)}\right) = 0.$
- (d) Gilt $\lim_{x\downarrow 0} \frac{f(x)}{g(x)} = 0$?