Analysis I Übungsblatt 14

Diese Hausaufgaben werden in den Übungen in der Woche ab 05.02.07, 10:15 Uhr besprochen.

Aufgabe 1. Bei Integralen haben wir an graphische Vorstellungen appelliert. Dass man dabei vorsichtig verfahren soll, soll diese Aufgabe deutlich machen. Berechnen Sie für jedes Gebiet in einer Folge von Gebieten $\{K_n\}_{n=1}^{\infty}$ den Flächeninhalt a_n und den Umfang ℓ_n , wobei die ersten 7 Gebiete hier abgebildet sind. Das Dreieck hat Seitenlänge 1. Berechnen Sie $\lim_{n\to\infty} a_n$ und $\lim_{n\to\infty} \ell_n$.

Aufgabe 2. Berechnen Sie eine Stammfunktion für

1.
$$f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = |x+1| - 1$$
,

2.
$$f: \mathbb{R} \to \mathbb{R} \text{ mit } f(x) = \frac{x^2}{1+x^2}$$
.

Aufgabe 3. Berechnen Sie $\int_{-10\pi}^{20\pi} \sqrt{1-\sin(x)^2} \ dx$.

Aufgabe 4. Berechnen Sie Stammfunktionen für:

1.
$$f:(1,\infty)\to \mathbb{R} \text{ mit } f(x)=\frac{x^2}{1-x^2}$$
,

2.
$$f: (-1,1) \to \mathbb{R}$$
 mit $f(x) = \frac{x^2}{1-x^2}$,

3.
$$f: (-\infty, -1) \to \mathbb{R} \text{ mit } f(x) = \frac{x^2}{1 - x^2}$$
.

Aufgabe 5. Berechnen Sie f' für $f(x) = \int_{x}^{x^2} e^t dt$.

Aufgabe 6. Berechnen Sie folgende Integrale:

1.
$$\int_0^2 x\sqrt{4-x^2} \, dx$$
,

2.
$$\int_0^2 \sqrt{4-x^2} dx$$
 (Hinweis: Benutzen Sie die Substitution $x = 2\sin(y)$),

3.
$$\int_2^4 \sqrt{x^2 - 4} \, dx$$
 (Hinweis: Benutzen Sie die Substitution $x = 2\cosh(y)$),

4.
$$\int_0^1 \frac{1}{\sqrt{8-2x-x^2}} dx$$
 (Hinweis: Benutzen Sie die Substitutionen $\frac{x+1}{3} = y$ (wieso?) und $y = \sin(t)$).

Aufgabe 7. Finden Sie eine Stammfunktion für $g(x) = \frac{1}{x^4 + 4}$.

Aufgabe 8. Sei a > 1. Berechnen Sie

1.
$$L_a = \lim_{\delta \downarrow 0} \int_{\delta}^1 x^{-\frac{1}{a}} dx$$
,

$$2. \ \ell_a = \lim_{T \to \infty} \int_1^T x^{-a} dx.$$

3. Erklären Sie, wieso
$$L_a - \ell_a = 1$$
.