Analysis I Übungsblatt 5

Diese Hausaufgaben werden am Donnerstag, den 19.11.2009 um 13:00 Uhr eingesammelt. Bitte schreiben Sie auf Ihre Lösung Ihren Namen und Ihre Gruppennummer und werfen Sie sie in einen der drei Briefkästen im Keller des Mathematischen Instituts.

Aufgabe 1.

1. Sei $\varepsilon > 0$. Berechnen Sie ein N_{ε} so, dass

$$\left|\frac{n^2-1}{n^2+1}-1\right|<\varepsilon$$

gilt für $n > N_{\varepsilon}$.

Sie haben also bewiesen, dass

$$\lim_{n\to\infty}\ldots = \ldots$$

2. Benutzen Sie die Definition von Konvergenz, um zu zeigen, dass

$$\lim_{n\to\infty}2^{-n}=0.$$

Berechnen Sie den Grenzwert oder zeigen Sie, dass die Folge nicht konvergiert: Aufgabe 2.

a.
$$\left\{ n^{-k} \binom{n}{k} \right\}_{n=1}^{\infty};$$
 b. $\left\{ \frac{n^4}{n^2 - 1} - \frac{n^4}{n^2 + 1} \right\}_{n=2}^{\infty};$ c. $\left\{ \left(\frac{1 + i\sqrt{3}}{2} \right)^n \right\}_{n=0}^{\infty};$ d. $\left\{ \left(\frac{1 + i\sqrt{3}}{2} \right)^{n!} \right\}_{n=0}^{\infty}.$

Aufgabe 3.

- 1. Die Folge $\{a_n\}_{n=0}^{\infty}$ sei konvergent. Sind die folgenden Behauptungen jeweils wahr oder unwahr? Man argumentiere.

 - $\begin{array}{ll} \text{(a)} & \lim_{n\to\infty}a_{n+1}=\lim_{n\to\infty}a_n;\\ \text{(b)} & \lim_{n\to\infty}\frac{a_1+a_2+\cdots+a_n}{n}=\lim_{n\to\infty}a_n. \end{array}$
- 2. Geben Sie (mit Beweis) eine divergente Folge $\{a_n\}_{n=0}^{\infty}$ an, so dass $\lim_{n\to\infty} \frac{a_1+a_2+\cdots+a_n}{n}$ existiert.

Aufgabe 4.

- 1. Geben Sie (mit Beweis) ein Beispiel einer konvergenten Folge $\{z_n\}_{n=0}^{\infty}$ an, für die $\lim_{n\to\infty} Arg(z_n)$ nicht konvergiert.
- 2. Geben Sie (mit Beweis) ein Beispiel einer divergenten Folge $\{z_n\}_{n=0}^{\infty}$ an, für die $\lim_{n\to\infty} Arg(z_n)$ konvergiert.

(bitte wenden)

Aufgabe 5. Berechnen Sie den Limes Superior und Limes Inferior von:

$$1. \left\{ \left| 2 + \frac{i^n}{n} \right| \right\}_{n=1}^{\infty};$$

$$2. \left\{ \cos \left(\frac{n(n+1)}{2} \pi \right) \right\}_{n=0}^{\infty};$$

3.
$$\left\{\frac{2^{-n}+(-1)^n}{1+3^{-n}}\right\}_{n=0}^{\infty}$$
;

4.
$$\left\{\operatorname{Re}\left(\left(\frac{1}{2}\sqrt{2}+i\frac{1}{2}\sqrt{2}\right)^n\right)\right\}_{n=0}^{\infty}$$
.