Analysis II Übungsblatt 10

Diese Hausaufgaben werden in den Übungen in der Woche ab 19.06.07, 10:00 Uhr besprochen.

Aufgabe 1. Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine dreimal stetig differenzierbare Funktion. Geben Sie das formale Taylorpolynom dritter Ordnung an der Stelle a = (0,0) an.

Aufgabe 2. Wir betrachten $f,g:\mathbb{R}^2\to\mathbb{R}$ mit

$$f(x,y) = 1 + (x^2 + y^2) + \frac{1}{2}(x^2 + y^2)^2 - 8x^2 - 4y^4$$
 und $g(x,y) = e^{x^2 + y^2} (1 - x^2 - y^4)$.

- Berechnen Sie die stationären Punkte von f bzw. g.
- Welche liefern ein Extremum?
- Welches Extremum ist global und welches lokal?

Aufgabe 3. Für welche $a, b \in \mathbb{R}$ hat $f(x, y) = x^2 + axy + by^2$ ein Minimum in (0, 0)?

Aufgabe 4. Geben Sie die Tangentialebene an den Graphen der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ mit $f(x,y) = \ln(1-x+y^2)$ in (1,2) an.

Aufgabe 5. Berechnen Sie eine Tangentialebene an den Graphen der Funktion $g : \mathbb{R}^2 \to \mathbb{R}$ mit $g(x,y) = x^2 + 2xy + y^4$, die die Gerade $\{(t,1-t,0); t \in \mathbb{R}\}$ enthält.

Aufgabe 6. * Sei $f: \mathbb{R}^2 \to \mathbb{R}$ eine fünfmal differenzierbare Funktion mit $\partial^{\alpha} f(0,0) = 0$ für $\alpha \in \mathbb{N}^2$ mit $|\alpha| \leq 2$.

- 1. Zeigen Sie: Wenn es ein $\alpha \in \mathbb{N}^2$ gibt mit $|\alpha| = 3$ und $\partial^{\alpha} f(0,0) \neq 0$, dann hat f kein Extremum in (0,0).
- 2. Zeigen Sie: Wenn ausserdem $\partial^{\alpha} f(0,0) = 0$ für alle $\alpha \in \mathbb{N}^2$ mit $|\alpha| = 3$ und

$$\xi_1^4 \partial_1^4 f(0,0) + 4 \xi_1^3 \xi_2 \partial_1^3 \partial_2 f(0,0) + 6 \xi_1^2 \xi_2^2 \partial_1^2 \partial_2^2 f(0,0) + 4 \xi_1 \xi_2^3 \partial_1 \partial_2^3 f(0,0) + \xi_2^4 \partial_2^4 f(0,0) > 0$$

für $\xi \in \mathbb{R}^2 \setminus \{0\}$, dann hat die Funktion f ein Minimum in (0,0).

3. Hat $f(x,y) = x(e^{xy^2} - 1 - y^2)$ ein Extremum in (0,0)? Und $f(x,y) = x(e^{xy^2} - 1 - xy^2)$?

^{*}Anspruchsvolle Aufgabe