Aufgaben der Klausur vom 24. Juli 2010 Prüfungsstoff: Analysis I + Analysis II

- 1. Die Zahl z=-1 ist eine Lösung von $z^5+z^4+z+1=0$. Berechnen Sie die übrigen Lösungen.
- 2. Berechnen Sie

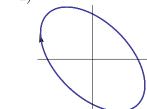
$$\int_0^\infty \frac{1}{\sqrt{x}(1+x)} dx,$$

oder zeigen Sie, dass dieses Integral nicht existiert.

- 3. Ist $\{x \in \mathbb{R}; x^2 \in \mathbb{Q}\}$ abzählbar?
- 4. (a) Gibt es eine Folge $\{a_n\}_{n=0}^{\infty}$ komplexer Zahlen, so dass die Reihe $\sum_{n=0}^{\infty} a_n z^n$ für z=2 konvergiert und für z=1+i divergiert?
 - (b) Für welche $z \in \mathbb{C}$ konvergiert $\sum_{n=0}^{\infty} \frac{1}{3^n} z^{n!}$?
- 5. Geben Sie jeweils das maximale Definitionsgebiet in \mathbb{R} an und skizzieren Sie den Graphen:
 - (a) $f(x) = \sin(\arcsin(x))$;
 - (b) $q(x) = \arcsin(\sin x)$.
- 6. a)

- b)
- c)

d



- Wir betrachten das System $\begin{pmatrix} x'(t) \\ y'(t) \end{pmatrix} = A \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$ für:
- I. $A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix}$ mit den Eigenwerten $\lambda_1 = 1 + 2i$ und $\lambda_2 = \dots$

Die zugehörige Skizze ist ...

Die Klassifizierung ist

II. $A = \begin{pmatrix} 1 & 2 \\ -2 & -1 \end{pmatrix}$ mit den Eigenwerten $\lambda_1 = i\sqrt{3}$ und $\lambda_2 = \dots$

Die zugehörige Skizze ist ...

Die Klassifizierung ist

III. $A = \begin{pmatrix} 1 & 2 \\ -2 & -2 \end{pmatrix}$ mit den Eigenwerten $\lambda_1 = \frac{1}{2}i\sqrt{7} - \frac{1}{2}$ und $\lambda_2 = \dots$

Die zugehörige Skizze ist . . .

Die Klassifizierung ist

IV. $A = \begin{pmatrix} 1 & 2 \\ -2 & -3 \end{pmatrix}$ mit den Eigenwerten $\lambda_1 = -1$ und $\lambda_2 = \dots$

Die zugehörige Skizze ist . . .

Die Klassifizierung ist

Ergänzen Sie die Lücken im Text.

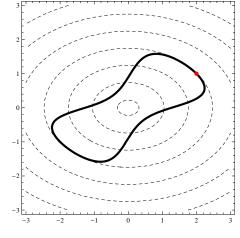
Mit "Klassifizierung" ist gemeint: stabiler Knoten, instabiler Strudel, ...

7. Sei $A = \{(x,y); x^2 + 2y^2 + xy + e^{2-xy} = 9\}$, und sei $f: \mathbb{R}^2 \to \mathbb{R}$ definiert durch

$$f(x,y) = x^2 + 2y^2$$
.

Wir behaupten, dass die Funktion $f:A\to\mathbb{R}$ ihr Maximum annimmt in (2,1). Was sagt der Multiplikator-Satz von Lagrange zu dieser Aussage?

Im Bild ist A dargestellt als durchgezogene Kurve, und die gestrichelten Kurven sind Niveaulinien von f.



8. Berechnen Sie das Taylor-Polynom zweiter Ordnung um $(\pi, 1)$ von

$$f\left(x,y\right) =\sin \left(xy\right) .$$

- 9. Sei $f:\mathbb{R}^{2}\to\mathbb{R}$ eine differenzierbare Funktion mit $f\left(0,1\right)=2$, und sei $g\left(x,y\right)=xf\left(x,y\right)$.
 - (a) Berechnen Sie $\frac{\partial g}{\partial x}(0,1)$ und $\frac{\partial g}{\partial y}(0,1)$.

Sei nun $f:\mathbb{R}^{2}\to\mathbb{R}$ eine stetige Funktion mit $f\left(0,1\right)=2$, und sei $g\left(x,y\right)=xf\left(x,y\right)$.

- (b) Existieren $\frac{\partial g}{\partial x}(0,1)$ und $\frac{\partial g}{\partial y}(0,1)$?
- (c) Ist g differenzierbar in (0,1)?
- 10. Wir betrachten

$$f(x,y) = \frac{x+y}{x^2 + y^2 + 2}.$$

- (a) Zeigen Sie $\lim_{\|(x,y)\|\to\infty} f(x,y) = 0$.
- (b) Beweisen Sie, dass $\max_{(x,y)\in\mathbb{R}^2} f(x,y)$ und $\min_{(x,y)\in\mathbb{R}^2} f(x,y)$ existieren.
- (c) Berechnen Sie die Stellen, wo die Funktion f ihr Minimum bzw. ihr Maximum annimmt.