WS 2008/2009

Gewöhnliche Differentialgleichungen Übungsblatt 13

Diese Hausaufgaben werden am 22.01.09 um 13:00 Uhr eingesammelt. Bitte schreiben Sie auf Ihre Lösung Ihren Namen und Ihre Gruppennummer und werfen Sie sie in den Briefkasten im Keller des Mathematischen Instituts.

Aufgabe 1.

1. Untersuchen Sie, ob die folgenden Funktionen gleichmäßig stetig sind.

a)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x \sin(x)$

b)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \sin(\sqrt[3]{x})$

2. Untersuchen Sie, ob die folgenden Funktionenfamilien gleichgradig stetig sind.

c)
$$f_n:[1,\infty)\to\mathbb{R},\ f_n(x)=\sqrt[n]{x}$$

d)
$$f_n: [0,1] \to \mathbb{R}, f_n(x) = \sqrt[n]{x}$$

Aufgabe 2. Für welche Anfangswerte u(0) liefert der Satz von Peano lokal die Existenz einer Lösung?

1.
$$u'(t) = \sin(\frac{1}{u(t)})$$

2.
$$\sin(u(t)) u'(t) = 1$$

Aufgabe 3. Zeigen Sie, dass das Anfangswertproblem

$$\begin{cases} u'(t) = -\operatorname{sgn}(u(t)) \\ u(0) = 1 \end{cases}$$

eine auf ganz \mathbb{R} definierte eindeutige Lösung hat. Ist die Lösung auch noch eindeutig, wenn der Anfangswert u(0) = 0 gewählt wird?

Hinweis: Die Signumfunktion ist für $x \in \mathbb{R}$ definiert durch

$$\operatorname{sgn}(x) = \begin{cases} 1 & \text{für } x > 0 \\ 0 & \text{für } x = 0 \\ -1 & \text{für } x < 0 \end{cases}$$

Es gilt die Definition von Lösung aus Kapitel 1.2.

Aufgabe 4. Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ stetig. Es sei außerdem für jedes $x \in \mathbb{R}$ die Funktion $u \mapsto f(x, u)$ wachsend. Man kann zeigen, dass das Anfangswertproblem

$$\begin{cases} u'(x) + f(x, u(x)) = 0\\ u(0) = 0 \end{cases}$$

eine Lösung besitzt, die zumindest auf ganz \mathbb{R}^+_0 definiert ist. Zeigen Sie, dass diese Lösung auf \mathbb{R}^+_0 sogar eindeutig ist.

Aufgabe 5. Es sei $f : \mathbb{R} \to \mathbb{R}$ stetig und die Funktion $u \mapsto f(u)$ wachsend. Es sei außerdem $g : \mathbb{R} \to \mathbb{R}$ Lipschitz-stetig auf \mathbb{R} mit Lipschitz-Konstante L. Zeigen Sie, dass das Anfangswertproblem

$$\begin{cases} u'(x) + f(u(x)) + g(u(x)) = 0 \\ u(0) = 0 \end{cases}$$

eine Lösung besitzt, die zumindest auf ganz \mathbb{R}_0^+ definiert und dort sogar eindeutig ist. *Hinweis:* Schreiben Sie $u(x) = e^{Lx}v(x)$.

Hinweis: Am Freitag, den 23. Januar, findet die Übung von Gruppe 6 (Jonathan Lux) im Raum 110 der Humanwissenschaftlichen Fakultät statt.