Funktionentheorie Übungsblatt 1

Diese Hausaufgaben werden am 10.04.08 um 13:00 Uhr eingesammelt. Bitte schreiben Sie auf Ihre Lösung Ihren Namen und Ihre Gruppennummer und werfen Sie sie in den Briefkasten im Keller des Mathematischen Instituts.

Aufgabe 1. Bringen Sie folgende Ausdrücke auf die Form a + bi mit $a, b \in \mathbb{R}$.

$$(1+3i)(2-5i) \qquad \frac{1+2i}{3+4i} \qquad e^{\pi i} \qquad \frac{x+yi}{x-yi} + \frac{x-yi}{x+yi} \qquad (x,y \in \mathbb{R} \setminus \{0\})$$

Aufgabe 2. Sei $z \in \mathbb{C}$ und \bar{z} die komplex Konjugierte zu z. Drücken Sie **Re**z, **Im**z und ||z|| nur durch z und \bar{z} aus.

Aufgabe 3.

- 1. Wie lassen sich Addition und Multiplikation in C geometrisch veranschaulichen?
- 2. Wie lassen sich geometrisch Lösungen von $z^2 = -i$ finden?

Aufgabe 4. Lösen Sie die folgenden komplexen Gleichungen.

$$z^{2} + 2zi = 1 - 4i$$
 $z^{2} + (4 + 2i)z + 6 + 4i = 0$ $z^{4} = -1$

Aufgabe 5. Für eine Funktion $f:[0,1] \to \mathbb{C}$ definiert man

$$\int_0^1 f(t) \ dt = \int_0^1 \mathbf{Re} f(t) \ dt + i \int_0^1 \mathbf{Im} f(t) \ dt.$$

Zeigen Sie

$$\left| \int_0^1 f(t) \ dt \right| \le \int_0^1 |f(t)| \ dt.$$

Hinweis: Setzen Sie $w = \int_0^1 f(t) dt$ und betrachten Sie $\int_0^1 \bar{w} f(t) dt$.