Funktionentheorie Übungsblatt 9

Diese Hausaufgaben werden am 12.06.08 um 13:00 Uhr eingesammelt. Bitte schreiben Sie auf Ihre Lösung Ihren Namen und Ihre Gruppennummer und werfen Sie sie in den Briefkasten im Keller des Mathematischen Instituts.

Aufgabe 1. Wir betrachten die Funktion $u(x_1, x_2) = \frac{1 - x_1^2 - x_2^2}{(1 - x_1)^2 + x_2^2}$.

- 1. Zeigen Sie, dass u harmonisch ist in $B_1(0)$.
- 2. Gilt $u(0,0) = \frac{1}{2\pi} \int_{\|y\|=1} u(y) d\sigma_y$?
- 3. Gilt $u(0,0) = \frac{1}{\pi} \int_{\|y\| < 1} u(y) dy$?

Aufgabe 2. Sei $f:\overline{B_1(0)}\to\mathbb{C}$ stetig und sei f holomorph auf $B_1(0)$. Ausserdem sei $f(B_1(0))$ offen und $f\left(\overline{B_1(0)}\right)$ konvex. Zeigen Sie, dass $\partial f(B_1(0))\subset f(\partial B_1(0))$ gilt.

Hinweis: Wenn eine Menge $\Omega \subset \mathbb{R}^2$ konvex ist, dann gibt es durch jedes $y \in \partial \Omega$ eine Gerade derart, dass Ω auf einer Seite dieser Gerade liegt:

$$\forall y \in \partial \Omega \ \exists p \in \mathbb{R}^2 \setminus \{0\} \ \text{mit} \ \forall x \in \Omega : \ p \cdot (x - y) \le 0.$$

Man benutze das Maximum-Prinzip für Re $((p_1 - ip_2)(f(z) - f(y_1 + iy_2)))$.

Aufgabe 3. Eine Funktion $u \in C^2(\Omega)$ heißt subharmonisch auf $\Omega \subset \mathbb{R}^2$, wenn $-\Delta u(x) \leq 0$ für $x \in \Omega$.

- 1. Zeigen Sie: Ist u harmonisch und $\phi : \mathbb{R} \to \mathbb{R}$ zweimal stetig differenzierbar und konvex, dann ist $\phi(u)$ subharmonisch.
- 2. Zeigen Sie: Ist *u* harmonisch, dann ist $|\nabla u|^2$ subharmonisch.

Aufgabe 4. Sei $f:\mathbb{C}\to\mathbb{C}$ eine nicht-konstante ganze Funktion. Zeigen Sie, dass $f(\mathbb{C})$ dicht in \mathbb{C} ist, also $\overline{f(\mathbb{C})}=\mathbb{C}$ gilt. Gilt sogar $f(\mathbb{C})=\mathbb{C}$? Hinweis: Für $\omega\notin f(\mathbb{C})$ kann man $g(z):=\frac{1}{f(z)-\omega}$ definieren.

Aufgabe 5. Auf dem Einheitskreis seien n verschiedene Punkte a_1, \ldots, a_n gegeben. Zeigen Sie, dass es einen Punkt a_0 auf dem Einheitskreis gibt mit

$$\prod_{i=1}^n |a_0 - a_i| \ge 1.$$