$$f(z) = 4\frac{z-i}{z+i}.$$

Wie sehen die Bilder der folgenden Mengen unter f aus? Geben Sie die Bildmengen jeweils explizit an, zeichnen Sie sie in ein Koordinatensystem und begründen Sie Ihre Antwort.

- (a) $\{z \in \mathbb{C}; \operatorname{Re} z = 0\}.$
- (b) $\{z \in \mathbb{C}; \operatorname{Im} z = 1\}.$
- (c) $\{z \in \mathbb{C}; |z| = 1\}.$

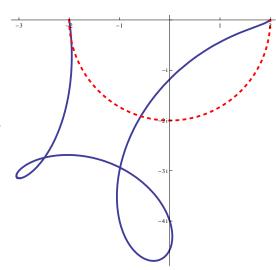
2. Die Kurve $\gamma:[-2,2]\to\mathbb{C}$ ist definiert durch

$$\gamma(t) = it^2 + t - 4i + e^{-i\pi t} - 1.$$

Berechnen Sie

$$\int_{\gamma} \frac{1}{z} dz.$$

Hinweis: Das Bild dieser Kurve ist in nebenstehender Abbildung als durchgezogene Linie eingezeichnet.



INAME. AUFGABE O	NAME:	Aufgabe 3	
------------------	-------	-----------	--

3. Sei $f: B_1(0) \to B_1(0)$ biholomorph mit $f(\frac{1}{4}) = 0$. Berechnen Sie |f(0)|.

4. Die Funktion $f: \mathbb{C} \setminus i\mathbb{R} \to \mathbb{C}$ sei definiert durch

$$f(z) = \ln|z| + i \arctan\left(\frac{\operatorname{Im} z}{\operatorname{Re} z}\right).$$

(a) Zeigen Sie, dass für z mit Re(z) > 0 gilt

$$f(z) = \text{Log}(z)$$
.

In einer Umgebung von $z_0 = 1 + i$ lässt sich f in eine Potenzreihe der Form

$$p(z) = \sum_{k=0}^{\infty} a_k (z - 1 - i)^k$$

entwickeln.

- (b) Wieso stimmt diese Behauptung?
- (c) Berechnen Sie a_0 und a_1 .
- (d) Konvergiert p an der Stelle z=1? Wenn ja, welchen Wert hat p(1)?
- (e) Konvergiert p an der Stelle $z=i-\frac{1}{4}$? Gilt $f(i-\frac{1}{4})=p\left(i-\frac{1}{4}\right)$?

(a) Wenn $f: \mathbb{C} \to \mathbb{C}$ holomorph ist, dann ist auch $\tilde{f}: \mathbb{C} \to \mathbb{C}$, definiert durch $\tilde{f}(z) = \overline{f(\overline{z})}$, holomorph.

(b) Für alle $z \in \mathbb{C} \setminus \{0\}$ gilt $e^{\text{Log}(z)} = z$.

(c) Für alle $z \in \mathbb{C}$ gilt $Log(e^z) = z$.

(d) Wenn $f: \mathbb{C} \to \mathbb{C}$ holomorph ist, dann gilt $\max \left\{ |f(z)|; z \in \overline{B_1(0)} \right\} = \max \{ |f(z)|; z \in \partial B_1(0) \}.$

(e) Wenn $f: \mathbb{C} \to \mathbb{C}$ holomorph ist, dann gilt min $\{|f(z)|; z \in \overline{B_1(0)}\} = \min\{|f(z)|; z \in \partial B_1(0)\}.$

T				
N	Λ	$\mathbf{N} \mathbf{I}$	\mathbf{L}	•
$\top J$	$\boldsymbol{\Box}$. TVT	Ľ	•

Aufgabe 6

6. Sei $u:\{x\in\mathbb{R}^2;\|x\|<3\}\to\mathbb{R}$ eine positive harmonische Funktion. Zeigen Sie:

$$\frac{1}{10} \le \frac{u(1,0)}{u(0,1)} \le 10$$

Hinweis: Harnack.

N	٨	ъ л		
$\perp N$	\mathbf{A}	M	Ŀ	

Aufgabe 7

7. Sei $z\in\mathbb{C}.$ Zeigen Sie, dass

$$\prod_{k=1}^{\infty} \left(1 - \frac{z^2}{k^2} \right)$$

konvergiert.

8. Wir betrachten

$$g(z) = \frac{z}{z^4 + 1}.$$

- (a) Wie viele Nullstellen und wie viele Polstellen hat g in $B_5(0)$?
- (b) Sei $\gamma:[0,2\pi]\to\mathbb{C}$ definiert durch $\gamma(t)=5e^{it}.$ Berechnen Sie

$$\frac{1}{2\pi i} \int_{\gamma} \frac{g'(z)}{g(z)} dz.$$

NAME:	AUFGABE 9

- 9. Sei $\Omega\subset\mathbb{C}$ offen. Wann heißt eine Funktion $f:\Omega\to\mathbb{C}$
 - (a) beschränkt?

(b) ganz?

(c) meromorph?

10. Gegeben seien die folgenden Funktionsvorschriften:

$$f_1(z) = z$$
 $f_2(z) = \frac{1}{z}$ $f_3(z) = z^2$ $f_4(z) = \text{Log}(z)$

In den untenstehenden Skizzen sind links jeweils einige Niveaumengen von Re f_i und rechts Niveaumengen von Im f_i eingezeichnet. Ordnen Sie die Skizzen den Funktionsvorschriften zu. *Hinweis:* Für eine Funktion $g:\mathbb{C}\to\mathbb{R}$ und $c\in\mathbb{R}$ ist die zugehörige Niveaumenge definiert durch

$$\{z \in \mathbb{C}; g(z) = c\}$$
.

