Prof. Guido Sweers SS2102

Funktionentheorie Uebungsblatt Nr. 1

1. (**0 Punkte**) Sei $z \in \mathbb{C}$ und \bar{z} die komplex Konjugierte zu z. Drücken Sie **Re**z, **Im**z und ||z|| nur durch z und \bar{z} aus.

2. **(5 Punkte)**

- (a) Wie lassen sich Addition und Multiplikation in C geometrisch veranschaulichen?
- (b) Lösen Sie die Gleichung

$$z^2 + 4iz - 4 - i = 0$$

sowohl rechnerisch als auch geometrisch.

- 3. (5 Punkte) Sei $f(z) = x^3y^2 + ix^2y^3$ für $z \in \mathbb{C}, z = x + iy$. Bestimmen Sie alle z_0 , an denen f differenzierbar ist.
- 4. (**0 Punkte**) Für welche $z \in \mathbb{C}$ sind folgende Funktionen $f_i : \mathbb{C} \to \mathbb{C}$, i = 1, ..., 5 komplex differenzierbar? Geben Sie dort die Ableitung an!

$$f_1(z) = z^{125}$$

$$f_2(z) = |z|^{125} - |z|^{33}$$

$$f_3(z) = \text{Re}(z)^3 + i\text{Im}(z)$$

$$f_4(z) = 2\text{Arg}(z) - i\ln(z\overline{z})$$

$$f_5(z) = \begin{cases} e^{-1/z^2} & \text{für } z \neq 0 \\ 0 & \text{für } z = 0 \end{cases}$$

- 5. (0 Punkte) Zeigen Sie: Gilt für eine komplex differenzierbare Funktion f, dass $f(z) \in \mathbb{R}$ liegt für alle $z \in \mathbb{C}$, so ist f konstant.
- 6. (10 Punkte) Eine differenzierbare Funktion f von \mathbb{R} nach \mathbb{R} ist invertierbar, wenn $f' \neq 0$. In \mathbb{C} gilt so etwas nicht. Als Beispiel betrachten wir die Funktion exp.
 - (a) Zeigen Sie, dass $\exp'(z) \neq 0$ gilt für alle $z \in \mathbb{C}$.
 - (b) Zeigen Sie, dass $\exp:\mathbb{C}\to\mathbb{C}$ $2\pi i$ -periodisch ist.
 - (c) Wählen Sie eine geschickte Teilmenge A von $\mathbb C$ derart, dass $\exp_{|A}$ invertierbar ist. Berechnen Sie die zugehörige Inverse.
- 7. (0 Punkte) Skizzieren Sie jeweils in der Gauß-Ebene die Menge aller $z \in \mathbb{C}$, so dass gilt:
 - (a) Arg $\left(\frac{z+1}{z-1}\right) = \frac{1}{2}\pi$.
 - (b) |z+2| = 2|z-1|.
- 8. (**O Punkte**) Zeigen Sie, dass das Produkt zweier komplex differenzierbarer Funktionen wieder komplex differenzierbar ist.