Funktionentheorie Übungsblatt 3 Version 3

Dieses Übungsblatt muss in den Übungsbriefkasten Funktionentheorie geworfen werden. Abgabeschluss ist Donnerstag, 30. April 2015, um 12 Uhr.

Aufgabe 1 (5 Punkte): Wir definieren $\sqrt{z} := \sqrt{|z|} e^{\frac{1}{2}i\operatorname{Arg}(z)}$ mit $\operatorname{Arg}(z) \in (-\pi, \pi]$.

- (a) Zeigen Sie, dass $f(z)=\sqrt{z}$ auf $\mathbb{C}\setminus(-\infty,0]$ differenzierbar ist und berechnen Sie die Ableitung.
- (b) Wieso ist f auf $(-\infty, 0]$ nicht differenzierbar?

Aufgabe 2 (5 Punkte): Wir definieren $f:(\mathbb{R}+i[0,\infty))\to\mathbb{C}$ durch

$$f(z) = 2\sqrt{\frac{z-1}{2}}\sqrt{\frac{z+1}{2}} + 2\log\left(\sqrt{\frac{z-1}{2}} + \sqrt{\frac{z+1}{2}}\right)$$

mit $\sqrt{\cdot}$ wie in Aufgabe 1.

- (a) Berechnen Sie f(1).
- (b) Berechnen Sie f(-1).
- (c) Berechnen Sie f(0).
- (d) Skizzieren Sie $f(\mathbb{R})$.

Aufgabe 3 (5 Punkte): Wir definieren $\sqrt{\cdot}$ wie in Aufgabe 1. Sei $\gamma(t) = e^{it}$, $\gamma:[0,2\pi] \to \mathbb{C}$. Berechnen Sie

$$\int_{\gamma} \sqrt{z} dz.$$

Aufgabe 4: Sei eine Kurve in Polarkoordinaten (r, ϕ) gegeben durch die Vorgabe $r = f(\phi)$, mit einer stetig differenzierbaren Funktion $f: [-\pi, \pi] \to (0, \infty)$ und $f(-\pi) = f(\pi)$.

- (a) Zeigen Sie, dass es sich um eine glatte Jordankurve handelt.
- (b) Leiten Sie eine Formel für die Länge der Kurve her.

Aufgabe 5 (5 Punkte): Wir betrachten die Kurve $\gamma:[0,2\pi]\to\mathbb{C}$, definiert durch

$$\gamma(t) = (1 + \cos(t))\cos(t) + i(1 + \cos(t))\sin(t).$$

- (a) Handelt es sich um eine Jordankurve?
- (b) Ist die Kurve glatt?

Aufgabe 6: Sei $\alpha > 0$. Berechnen Sie für $\gamma_{\alpha} : [0,1] \to \mathbb{C}$ mit $\gamma_{\alpha}(t) = t + it^{\alpha}$ die Integrale

$$\int_{\gamma_{\alpha}} \operatorname{Re}(z) dz$$
 und $\int_{-\gamma_{\alpha}} z^2 dz$

Aufgabe 7: Sei $n \in \mathbb{Z}$ und $\gamma : [0, 2\pi] \to \mathbb{C}$ mit $\gamma(t) = e^{it}$. Berechnen Sie

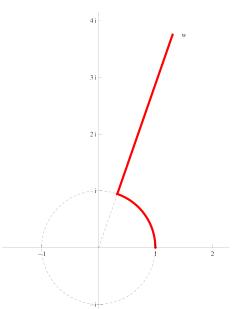
$$\int_{\gamma} z^n dz$$

Aufgabe 8: Für $w \in \mathbb{C} \setminus (-\infty, 0]$ sei γ_w eine stückweise glatte Kurve, die 1 mit w verbindet durch den kürzesten Weg über den Kreisbogen mit Radius 1 um O und die Gerade von $\frac{w}{|w|}$ nach w (siehe Abbildung). Zeigen Sie, dass

$$\int_{\gamma_w} \frac{1}{z} dz = \text{Log}(w).$$

Zeigen Sie auch, dass für $\zeta_w:[0,1]\to\mathbb{C}$ mit $\zeta_w(t)=(1-t)+tw$ gilt, dass

$$\int_{C_{xx}} \frac{1}{z} dz = \text{Log}(w).$$

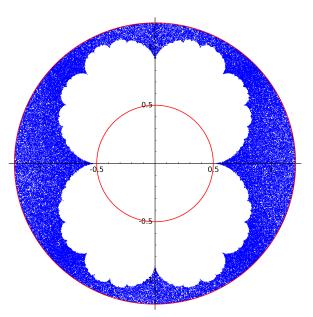


Aufgabe 9: Sei $\gamma:[0,1]\to\mathbb{C}$ definiert durch $\gamma(t)=it+(1-t)(-i)$. Berechnen Sie

$$\int_{\gamma} z \cos(z) dz.$$

Aufgabe 10: Sei $p(z) = z^2 + \frac{1}{4}$. Für den Startwert $z_0 \in \mathbb{C}$ sei rekursiv die Folge $(z_n)_{n\in\mathbb{N}}$ definiert durch $z_{n+1} = p(z_n)$.

- (a) Zeigen Sie, dass die Folge für jeden Startwert mit $|z_0| \leq \frac{1}{2}$ beschränkt bleibt.
- (b) Angenommen z_n konvergiert, welche Grenzwerte könnte z_n haben?
- (c) Zeigen Sie, dass $\frac{1}{2}$ die optimale Konstante ist, es also für jeden Wert $a > \frac{1}{2}$ eine Folge mit $|z_0| < a$ gibt, so dass z_n unbeschränkt ist.
- (d) Zeigen Sie, dass die Folge für jeden Startwert mit $|z_0| > \frac{1+\sqrt{2}}{2}$ divergiert.



Veranstaltungshomepage: http://www.mi.uni-koeln.de:8905