Partielle Differentialgleichungen Übungsblatt 7

Diese Hausaufgaben werden am Freitag, den 12. Juni um 9 Uhr (!) eingesammelt. Bitte schreiben Sie auf Ihre Lösung Ihren Namen und Ihre Gruppennummer und werfen Sie sie in den Briefkasten im Keller des Mathematischen Instituts.

Aufgabe 1: Finden Sie eine Funktion $f \in L^1_{lok}(\mathbb{R}^2)$ derart, dass

$$F_f(\varphi) := \int_{\mathbb{R}^2} f(x)\varphi(x)dx$$

so ist, dass im Sinne von Distributionen gilt:

$$-\Delta F_f = \delta \in \mathcal{S}'(\mathbb{R}^2).$$

Aufgabe 2: Man definiert $(v.p.\frac{1}{x})$ für passende Funktionen $\varphi: \mathbb{R} \to \mathbb{R}$ durch

$$\left(\text{v.p.} \frac{1}{x}\right)(\varphi) = \lim_{\varepsilon \downarrow 0} \left(\int_{-\infty}^{-\varepsilon} \frac{\varphi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\varphi(x)}{x} dx \right).$$

- a) Zeigen Sie, dass (v.p. $\frac{1}{r}$) (φ) wohldefiniert ist für $\varphi \in \mathcal{S}(\mathbb{R})$.
- b) Zeigen Sie, dass $\psi : \mathbb{R} \to \mathbb{R}$ definiert durch $\psi(x) = \exp(-x^2)$ in $\mathcal{S}(\mathbb{R})$ liegt und dass

$$\left(\text{v.p.}\frac{1}{x}\right)(\psi) = 0.$$

c) Ist die Abbildung $(v.p.\frac{1}{x}): \mathcal{S}(\mathbb{R}) \mapsto \mathbb{R}$ stetig? Hinweis: $\varphi(x) = \varphi(0) \psi(x) + (\varphi(x) - \varphi(0)) \psi(x) + \varphi(x) (1 - \psi(x))$.

Aufgabe 3: Wir nehmen $u_0, v_0 \in C_0^{\infty}(\mathbb{R})$. Sei u die Lösung von

$$\begin{cases} u_{tt} - u_{xx} = 0 & \text{für } (x, t) \in \mathbb{R} \times \mathbb{R}^+, \\ u(x, 0) = u_0(x) & \text{für } x \in \mathbb{R}, \\ u_t(x, 0) = v_0(x) & \text{für } x \in \mathbb{R}. \end{cases}$$

Die kinetische Energie, beziehungsweise potentielle Energie, am Zeitpunkt t sind definiert durch

$$K(t) = \int_{\mathbb{R}} \frac{1}{2} (u_t(x,t)^2) dx \text{ und } P(t) = \int_{\mathbb{R}} \frac{1}{2} (u_x(x,t)^2) dx.$$

Zeigen Sie:

- a) K(t) + P(t) ist konstant.
- b) Es gibt $t_0 \in \mathbb{R}^+$ mit K(t) = P(t) für alle $t \geq t_0$.

Aufgabe 4: Zeigen Sie, dass für $u_0, v_0 \in C_0^{\infty}(\mathbb{R}^3)$ die Lösung von

$$\begin{cases} u_{tt} - \Delta u = 0 & \text{für } (x,t) \in \mathbb{R}^3 \times \mathbb{R}^+, \\ u(x,0) = u_0(x) & \text{für } x \in \mathbb{R}^3, \\ u_t(x,0) = v_0(x) & \text{für } x \in \mathbb{R}^3. \end{cases}$$

die folgende Abschätzung erfüllt: $|u(x,t)| \leq \frac{C(u_0,v_0)}{t}$ für $(x,t) \in \mathbb{R}^3 \times \mathbb{R}^+$.