Partielle Differentialgleichungen

Übungsblatt 2

Die Lösungen müssen in den Übungsbriefkasten für Partielle Differentialgleichungen (Raum 301 im MI) geworfen werden. Abgabeschluss ist am Donnerstag, den 26.04.2018, um 12 Uhr.

Aufgabe 1 (3+3 Punkte): Sei $u: B_1(0) \subset \mathbb{R}^n \to \mathbb{R}$ mit $u(x) = \frac{1}{\|x\|}$ für $x \neq 0$ gegeben.

- Für n = 1 ist u nicht integrierbar auf $B_1(0)$,
- Für $n \geq 2$ ist u integrierbar auf $B_1(0)$, d.h. $\int_{B_1(0)} |u(x)| dx < \infty$.

Für $x \neq 0$ erhält man $\frac{\partial}{\partial x_1} u = \frac{-x_1}{\|x\|^3}$.

- (a) Für welche n ist $\frac{\partial}{\partial x_1}u$ integrierbar auf $B_1(0)$, d.h. $\int_{B_1(0)} \left| \frac{\partial}{\partial x_1}u(x) \right| dx < \infty$?
- (b) Für welche n ist $\frac{\partial}{\partial x_1}u$ die schwache Ableitung nach x_1 von u auf $B_1(0)$?

Hinweis: Teilen Sie dazu die Integrale über $B_1(0)$ auf in Integrale über $B_1(0) \setminus B_{\varepsilon}(0)$ und $B_{\varepsilon}(0)$. Nutzen Sie, dass

$$\lim_{\varepsilon \to 0} \int_{\Omega \setminus B_{\varepsilon}(0)} f(x) dx = \int_{\Omega} f(x) dx$$

für integrierbare Funktionen gilt.

Aufgabe 2: Sei $u(x) = ||x||^{-a}$ und $x \in B_1(0) \subset \mathbb{R}^n$. Für welche $a \in \mathbb{R}^+$ und $n \in \mathbb{N}$ ist u schwach differenzierbar auf $B_1(0)$?

Aufgabe 3: (a) Zeigen Sie, dass $x \mapsto \ln |x|$ auf (-1,1) keine schwache Ableitung hat.

(b) Zeigen Sie, dass $x \mapsto \ln |x|$ auf $B_1(0) \subset \mathbb{R}^2$ eine schwache Ableitung nach x_1 hat.

Aufgabe 4 (6 Punkte): Sei $\Omega \subset \mathbb{R}^2$ und $\sigma \in \mathbb{R}$. Welche Differentialgleichung erfüllt eine Funktion $u \in C^4(\overline{\Omega})$ mit

$$\int_{\Omega} \left(\Delta u \Delta \varphi - \sigma \left(u_{xx} \varphi_{yy} + u_{yy} \varphi_{xx} - 2 u_{xy} \varphi_{xy} \right) \right) d(x,y) = 0 \text{ für alle } \varphi \in C_0^{\infty}(\Omega)?$$

Aufgabe 5: Geben Sie eine schwache und eine distributionelle Formulierung der folgenden Differentialgleichungen für u:

- (a) $-\Delta u(x) = f(x)$ für $x \in B_1(0) \subset \mathbb{R}^n$.
- (b) $\cos(x) u''(x) = f(x) \text{ für } x \in (-\frac{1}{2}\pi, \frac{1}{2}\pi).$
- (c) $\nabla \cdot (e^{x_1} \nabla u(x)) = f(x)$ für $x \in B_1(0) \subset \mathbb{R}^2$.

Hinweis: Lesen Sie weiter im Skript der zweiten Woche.

Aufgabe 6: Wie ist die klassische Formulierung der Differentialgleichung für u bei:

(a)
$$\int_{-\frac{1}{2}\pi}^{\frac{1}{2}\pi} \left(\cos\left(x\right)u'\left(x\right)\varphi'\left(x\right) - f\left(x\right)\varphi\left(x\right)\right)dx = 0 \text{ für alle } \varphi \in C_0^{\infty}\left(-\frac{1}{2}\pi, \frac{1}{2}\pi\right).$$

(b)
$$\int_{B_1(0)} \left(\left(1 + |x|^2 \right) \nabla u(x) \nabla \varphi(x) + f(x) \varphi(x) \right) dx = 0 \text{ für alle } \varphi \in C_0^{\infty}(B_1(0)).$$

(c)
$$\int_{B_{1}(0)} \left(-\left(1+\left|x\right|^{2}\right) u\left(x\right) \Delta \varphi\left(x\right)+f\left(x\right) \varphi\left(x\right)\right) dx=0 \text{ für alle } \varphi \in C_{0}^{\infty}\left(B_{1}\left(0\right)\right).$$

Aufgabe 7 (2+3+3 Punkte): Es ist bereits bekannt, dass $\varphi : \mathbb{R}^n \to \mathbb{R}$, definiert durch

$$\varphi(x) = \begin{cases} e^{\frac{1}{\|x\|^2 - 1}} & \text{falls } \|x\| < 1\\ 0 & \text{falls } \|x\| \ge 1 \end{cases},$$

beliebig oft differenzierbar ist. Man definiere nun für $\varepsilon > 0$ die Funktion $\Psi_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}$ durch

$$\Psi_{\varepsilon}(x) := \varepsilon^{-n} \left(\int_{\mathbb{R}^n} \varphi(\tilde{x}) \, d\tilde{x} \right)^{-1} \varphi\left(\frac{x}{\varepsilon}\right).$$

(a) Zeigen Sie für alle $\varepsilon > 0$:

$$\int_{\mathbb{R}^n} \Psi_{\varepsilon}(x) \, dx = 1$$

Sei nun $u:\mathbb{R}^n\to\mathbb{R}$ stetig mit kompaktem Träger. Man definiere für $\varepsilon>0$ die Funktion $u_\varepsilon:\mathbb{R}^n\to\mathbb{R}$ durch

$$u_{\varepsilon}(x) := \int_{\mathbb{R}^n} u(y) \Psi_{\varepsilon}(x-y) \, dy.$$

- (b) Zeigen Sie, dass u_{ε} stetig differenzierbar ist.
- (c) Zeigen Sie, dass $||u_{\varepsilon} u||_{\infty} \to 0$ für $\varepsilon \downarrow 0$.