Aufgaben der Nachklausur in Variationsrechnung vom 13. März 2012

1. Wir betrachten den Hilbertraum

$$H = \left\{ u \in W^{2,2}\left((0,3)\right); u\left(0\right) = u'\left(0\right) = 0 \right\}.$$

- (a) Zeigen Sie, dass $||u||_{L^{2}((0,3))} \le 3 ||u'||_{L^{2}((0,3))}$ gilt für alle $u \in H \cap C^{2}([0,3])$.
- (b) Gilt auch $||u||_{L^2((0,3))} \le 3 ||u''||_{L^2((0,3))}$ für alle $u \in H \cap C^2([0,3])$?
- (c) Begründen Sie kurz, warum durch $\|u\|_H:=\|u''\|_{L^2((0,3))}$ eine zur $W^{2,2}((0,3))$ -Norm äquivalente Norm auf H definiert wird.
- 2. Mitch Buchannon möchte wissen, wie sich ein Sprungbrett durchbiegt. Er denkt eindimensional und überlegt sich dazu folgendes Energiefunktional:

$$J(u) = \int_0^3 (\frac{1}{2}u''(x)^2 - f(x)u(x)) dx.$$

Hier ist u die Auslenkung bezüglich der Horizontalen und $f \in L^{\infty}((0,3))$ die Gewichtsverteilung. Das Brett ist 4 lang und zwischen -1 und 0 auf Beton festgeleimt.

- (a) Welche Randbedingungen muss man in 0 bzw. 3 für ein passendes Modell vorschreiben, und welche bekommt man als natürliche Randbedingungen? Wieso passt der Hilbertraum aus Aufgabe 1 zu diesem Modell?
- (b) Hat J ein Infimum auf diesem Hilbertraum?
- (c) Welche Differentialgleichung erfüllt das Minimum?
- (d) Hat J ein Minimum auf diesem Hilbertraum?

3. Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial \Omega \in C^{\infty}$. Begründen Sie, wieso $J: W_0^{1,2}(\Omega) \to \mathbb{R}$, definiert durch

$$J(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u(x)|^2 + \frac{1}{\sqrt{u(x)^2 + 1}} \right) dx,$$

ein Minimum hat in $W_0^{1,2}(\Omega)$.

4. Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial \Omega \in C^{\infty}$ und sei $f \in W_0^{1,2}(\Omega)$. Das Funktional $J: W_0^{1,2}(\Omega) \to \mathbb{R}$, definiert durch

1

$$J(u) = \int_{\Omega} \left(\frac{1}{2} |\nabla u(x)|^2 + f(x) u(x)\right) dx,$$

hat ein Minimum $\tilde{u} \in W_0^{1,2}(\Omega)$.

- (a) Für welche $k \in \mathbb{N}$ gilt $\tilde{u} \in W^{k,2}(\Omega)$?
- (b) Gilt $\tilde{u} \in W_0^{2,2}(\Omega)$?

- 5. Sei $\Omega \subset \mathbb{R}^3$ ein beschränktes Gebiet mit $\partial \Omega \in C^{\infty}$.
 - (a) Für welche $p \in [1, \infty]$ gilt $W^{1,2}(\Omega) \hookrightarrow L^p(\Omega)$?
 - (b) Für welche $\gamma \in [0,1]$ gilt $W^{2,2}(\Omega) \hookrightarrow C^{0,\gamma}(\overline{\Omega})$?

Begründen Sie jeweils Ihre Antwort.

6. Die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$, definiert durch

$$f\left({x,y} \right) = \frac{1}{{40}}\left({{x^3} - 10\sin \left(x \right) + 3{y^2} + 4{e^{ - {x^2} - {y^2} - 2y}}} \right),$$

ist hier dargestellt mittels Graph und mittels Höhenlinien. Wie viele stationäre Punkte dieser Funktion f kann man begründen?



