Prof. Guido Sweers Matthias Erven

Variationsrechnung Übungsblatt 4

Diese Hausaufgaben werden am Mittwoch, den 9.11.2011, um 13:45 Uhr eingesammelt. Bitte werfen Sie Ihre Lösung in den Briefkasten im Keller des Mathematischen Instituts ein.

Definition 1. Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ heißt konvex, wenn für alle $x, y \in \mathbb{R}^n$ und jedes $\theta \in (0, 1)$ gilt

$$f(\theta x + (1 - \theta) y) \le \theta f(x) + (1 - \theta) f(y).$$

Definition 2. Eine Funktion $f: \mathbb{R}^n \to \mathbb{R}$ heißt konvex, wenn es für jedes $y_0 \in \mathbb{R}^n$ ein $p \in \mathbb{R}^n$ gibt mit

$$f(y) \ge f(y_0) + p \cdot (y - y_0)$$
 für alle $y \in \mathbb{R}^n$.

Aufgabe 1: (9 Punkte) Wählen Sie eine der beiden Definitionen für Konvexität aus und beweisen oder widerlegen Sie jeweils folgende Aussagen: Seien $f_k : \mathbb{R} \to \mathbb{R}$ für $k \in \mathbb{N}$ konvexe Funktionen, so dass $\{f_k(x); k \in \mathbb{N}\}$ beschränkt ist für jedes $x \in \mathbb{R}$. Dann ist $g : \mathbb{R} \to \mathbb{R}$, definiert durch

a)
$$g(x) := \sup_{k \in \mathbb{N}} f_k(x)$$
, b) $g(x) := \inf_{k \in \mathbb{N}} f_k(x)$, c) $g(x) := \lim_{k \in \mathbb{N}} f_k(x)$

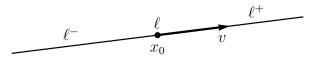
eine konvexe Funktion. (In c) setzen wir voraus, dass der Limes in jedem Punkt existiert.)

Aufgabe 2: Um zu zeigen, dass die beiden Definitionen von Konvexität äquivalent sind, benötigen wir unter anderem folgende Aussage (hier formuliert für Dimension 2): Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ konvex im Sinne von Definition 1 und $x_0 \in \mathbb{R}^2$. Es sei $v \in \mathbb{R}^2$ ein Richtungsvektor und die Gerade ℓ definiert durch

$$\ell := \left\{ x \in \mathbb{R}^2; x = x_0 + tv \text{ für ein } t \in \mathbb{R} \right\}.$$

Desweiteren sei

 $\ell^+ := \left\{ x \in \mathbb{R}^2; x = x_0 + tv \text{ für ein } t \in \mathbb{R}^+ \right\} \text{ und } \ell^- := \left\{ x \in \mathbb{R}^2; x = x_0 + tv \text{ für ein } t \in \mathbb{R}^- \right\}.$



Dann gilt $f \ge f(x_0)$ auf einer der beiden Halbgeraden, das heißt, es gilt

$$f\left(x\right)\geq f\left(x_{0}\right)$$
 für alle $x\in\ell^{+}$ oder $f\left(x\right)\geq f\left(x_{0}\right)$ für alle $x\in\ell^{-}.$

- a) (6 Punkte) Beweisen Sie diese Aussage. *Hinweis*: Nehmen Sie an, dass es ein $x_1 \in \ell^-$ gibt mit $f(x_1) < f(x_0)$. Zeigen sie, dass dann $f(x) \ge f(x_0)$ für alle $x \in \ell^+$ gilt. Wieso sind Sie damit fertig?
- b) * Zeigen Sie, dass es sogar eine Halbebene \mathbb{H} mit $x_0 \in \partial \mathbb{H}$ gibt, so dass $f(x) \geq f(x_0)$ für alle $x \in \mathbb{H}$ gilt.

Aufgabe 3: * Wir betrachten die Minimalfläche aus Beispiel 4.2.1. In Abbildung 4.1 sind rechts die beiden Funktionen skizziert, die man als Lösung der Euler-Lagrange-Gleichung für d=1.5 erhält. Überlegen Sie sich, wie eine Testfunktion φ aussehen müsste, damit eine der beiden Lösungen eine negative zweite Variation $\partial^2 J(u,\varphi)$ in Richtung φ hat.

^{*}unbewertete Zusatzaufgabe

Aufgabe 4: a) **(5 Punkte)** Zeigen Sie mit Hilfe der zweiten Variation, dass die in Aufgabe 1.a) von Blatt 1 erhaltene Lösung u ein lokales Minimum der Bogenlänge in

$$\mathcal{C} := \left\{ u \in C^2[0, 1]; u(0) = 0 \text{ und } u(1) = 1 \right\}$$

liefert.

b) * Zeigen sie, dass es sich um einen globalen Minimierer handelt.

Aufgabe 5: * Es soll die Poincaré-Friedrichs-Ungleichung in einer Dimension bewiesen werden.

a) Es sei $u \in C^1[0,1] \cap C_0[0,1]$. Zeigen Sie, dass

$$\int_0^1 u^2 \, dx \le \int_0^1 \left(u' \right)^2 dx.$$

Hinweis: Es gilt $\int_0^1 (u(x))^2 dx = \int_0^1 u(x) \int_0^x u'(s) ds dx \le \int_0^1 |u(x)| dx \cdot \int_0^1 |u'(s)| ds$. Wieso gilt das? Verwenden Sie die Cauchy–Schwarz–Ungleichung.

b) Gilt die Ungleichung auch für alle $u \in C^1[0,1]$?

Aufgabe 6: * Zeigen Sie, dass die Determinante als Abbildung det : $M^{2\times 2}(\mathbb{R}) \to \mathbb{R}$, $A \mapsto \det(A)$ Rang-1-konvex, nicht aber konvex ist.

^{*}unbewertete Zusatzaufgabe