The relaxed highest weight representations introduced by Feigin, Semikhatov and Tipunin are a special class of representations of the Lie algebra affine \(\text{sl}_2 \), which do not have a highest (or lowest) weight.

We formulate a generalization of this notion for an arbitrary affine Kac-Moody algebra \(g \). We then realize induced \(g \)-modules of this type and their duals as global sections of twisted D-modules on the Kashiwara flag scheme associated to \(g \). The D-modules that appear in our construction are direct images from subschemes given by the intersection of finite dimensional Schubert cells with their translate by a simple reflection. Besides the twist, they depend on a complex number describing the monodromy of the local systems we construct on these intersections. These results describe for the first time explicit non-highest weight \(g \)-modules as global sections on the Kashiwara flag scheme and extend several results of Kashiwara-Tanisaki to the case of relaxed highest weight representations. This is based on the preprint arxiv:1607.06342 [math.RT].