Relaxed Highest Weight Modules from \mathcal{D}-Modules on the Kashiwara Flag Scheme

Claude Eicher, ETH Zurich
November 29, 2016
Relaxed highest weight modules for $\hat{\mathfrak{sl}}_2$ after Feigin, Semikhatov, Sirota, Tipunin

Introduction to localization on the affine flag variety

Setup

Overview of results
Relaxed highest weight modules for $\hat{\mathfrak{sl}}_2$ after Feigin, Semikhatov, Sirota, Tipunin
We start with the Lie algebra \(\mathfrak{sl}_2 = \mathbb{C} e \oplus \mathbb{C} h \oplus \mathbb{C} f \) and define \(\hat{\mathfrak{sl}}_2 = \mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathbb{C}[z, z^{-1}] \oplus \mathbb{C} K \), where \(K \) is central and

\[
[X \otimes z^m, Y \otimes z^n] = [X, Y] \otimes z^{m+n} + m\delta_{m+n,0} \text{Tr}(XY)K.
\]

This endows \(\hat{\mathfrak{sl}}_2 \) with the structure of a Lie algebra.
We start with the Lie algebra $\mathfrak{sl}_2 = \mathbb{C} e \oplus \mathbb{C} h \oplus \mathbb{C} f$ and define $\hat{\mathfrak{sl}}_2 = \mathfrak{sl}_2 \otimes_\mathbb{C} \mathbb{C}[z, z^{-1}] \oplus \mathbb{C} K$, where K is central and

$$[X \otimes z^m, Y \otimes z^n] = [X, Y] \otimes z^{m+n} + m\delta_{m+n,0} \text{Tr}(XY)K.$$

This endows $\hat{\mathfrak{sl}}_2$ with the structure of a Lie algebra.

Up to the derivation element this defines the **affine Kac-Moody algebra** with Cartan matrix $\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$.

Definition (Semikhatov-Sirota ’97)

Let $\mu_1, \mu_2 \in \mathbb{C}$ and $t \in \mathbb{C} \setminus \{0\}$. The relaxed Verma module $R_{\mu_1, \mu_2, t}$ is the $\hat{\mathfrak{sl}}_2$-module generated from a vector v that satisfies the annihilation conditions

$$(e \otimes z^n)v = (h \otimes z^n)v = (f \otimes z^n)v = 0 \quad n \geq 1$$

and the relations

$$(f \otimes 1)(e \otimes 1)v = -\mu_1\mu_2 v \quad (h \otimes 1)v = -(1 + \mu_1 + \mu_2)v$$

$Kv = (t - 2)v$

by a free action of $e \otimes z^n$, $f \otimes z^n$, $h \otimes z^n$, $n \leq -1$.
Different μ_1, μ_2 can give rise to isomorphic $R_{\mu_1, \mu_2, t}$ and it is easy to write out the condition.
Different μ_1, μ_2 can give rise to isomorphic $R_{\mu_1, \mu_2, t}$ and it is easy to write out the condition.

To get a first impression about the structure of $R_{\mu_1, \mu_2, t}$ we can look at the $\mathfrak{sl}_2 \otimes \mathbb{C}1$-submodule generated by v. It is a weight module with weights $-(1 + \mu_1 + \mu_2) + 2 \mathbb{Z}$, each of which has multiplicity one. We have $(f \otimes 1)(e \otimes 1)^{\mu_j+1} v = 0$ and $(e \otimes 1)(f \otimes 1)^{-\mu_j} v = 0$ if these expressions are actually defined and $\mu_j \neq 0$ in the second case.
\[
\mu_1 \notin \mathbb{Z}, \mu_2 \notin \mathbb{Z}
\]

\[-(\mu_1 + \mu_2 + 1)\]

\[
\mu_1 \in \mathbb{Z}_{\geq 0}, \mu_2 \notin \mathbb{Z}
\]

\[
\mu_1 - \mu_2 + 1
\]

\[
\mu_1 \in \mathbb{Z}_{< 0}, \mu_2 \notin \mathbb{Z}
\]

\[
\mu_1 - \mu_2 - 1
\]
\(\mu_1 \notin \mathbb{Z}, \mu_2 \notin \mathbb{Z} \) case (0)

\[-(\mu_1 + \mu_2 + 1)\]

\(\mu_1 \in \mathbb{Z}_{\geq 0}, \mu_2 \notin \mathbb{Z} \) case (1, +)

\(\mu_1 - \mu_2 + 1 \)

\(\mu_1 \in \mathbb{Z}_{< 0}, \mu_2 \notin \mathbb{Z} \) case (1, −)

\(\mu_1 - \mu_2 - 1 \)
$\mu_1 \in \mathbb{Z}_{<0}, \mu_2 \in \mathbb{Z}_{\geq 0}$

$\mu_1 - \mu_2 - 1 \quad \quad \quad \quad \quad \quad \quad \mu_2 - \mu_1 + 1$

$\mu_1 \in \mathbb{Z}_{\geq 0}, \mu_2 \in \mathbb{Z}_{\geq 0}, \mu_1 \geq \mu_2$

$\mu_2 - \mu_1 + 1 \quad \quad \quad \quad \quad \quad \quad \mu_1 - \mu_2 + 1$

$\mu_1 \in \mathbb{Z}_{<0}, \mu_2 \in \mathbb{Z}_{<0}, \mu_1 \leq \mu_2$

$\mu_1 - \mu_2 - 1 \quad \quad \quad \quad \quad \quad \quad \mu_2 - \mu_1 - 1$
\(\mu_1 \in \mathbb{Z}_{<0}, \mu_2 \in \mathbb{Z}_{\geq 0} \) case (2, \(-+\))

\[
\begin{align*}
\mu_1 - \mu_2 - 1 & \quad \mu_2 - \mu_1 + 1 \\
& \quad \vdots \quad \vdots
\end{align*}
\]

\(\mu_1 \in \mathbb{Z}_{\geq 0}, \mu_2 \in \mathbb{Z}_{\geq 0}, \mu_1 \geq \mu_2 \) case (2, \(++\))

\[
\begin{align*}
\mu_2 - \mu_1 + 1 & \quad \mu_1 - \mu_2 + 1 \\
& \quad \vdots \quad \vdots
\end{align*}
\]

\(\mu_1 \in \mathbb{Z}_{<0}, \mu_2 \in \mathbb{Z}_{<0}, \mu_1 \leq \mu_2 \) case (2, \((-\))

\[
\begin{align*}
\mu_1 - \mu_2 - 1 & \quad \mu_2 - \mu_1 - 1 \\
& \quad \vdots \quad \vdots
\end{align*}
\]
Coming back to $R_{\mu_1,\mu_2,t}$, we note that $(e \otimes 1)(f \otimes 1)^{-\mu_1} v = 0$ implies that the submodule generated by $(f \otimes 1)^{-\mu_1} v$ is isomorphic to a Verma module of highest weight $\lambda = \mu_1 - \mu_2 - 1$. We will denote it by $M_{\lambda,t}$.
Coming back to $R_{\mu_1,\mu_2,t}$, we note that $(e \otimes 1)(f \otimes 1)^{-\mu_1} v = 0$ implies that the submodule generated by $(f \otimes 1)^{-\mu_1} v$ is isomorphic to a **Verma module** of highest weight $\lambda = \mu_1 - \mu_2 - 1$. We will denote it by $M_{\lambda,t}$.

Let’s formulate a similar statement for $(e \otimes 1)^{\mu_1+1} v$.
Consider the automorphism of $\hat{\mathfrak{sl}_2}$ sending $K \mapsto K$ and

$$e \otimes z^n \mapsto e \otimes z^{n+\theta} \quad f \otimes z^n \mapsto f \otimes z^{n-\theta} \quad h \otimes z^n \mapsto h \otimes z^n + \theta \delta_{n,0} K.$$
Consider the automorphism of $\hat{\mathfrak{sl}_2}$ sending $K \mapsto K$ and
\[
\begin{align*}
\ e \otimes z^n &\mapsto e \otimes z^{n+\theta} \\
\ f \otimes z^n &\mapsto f \otimes z^{n-\theta} \\
\ h \otimes z^n &\mapsto h \otimes z^n + \theta \delta_{n,0} K .
\end{align*}
\]

The vector $w = (e \otimes 1)^{\mu_1 + 1} v$ satisfies

\[
\begin{align*}
(e \otimes z^{\geq 1})w &= (h \otimes z^{\geq 1})w = (f \otimes z^{\geq 0})w = 0 \\
(h \otimes 1 + (t - 2))w &= (t + \mu_1 - \mu_2 - 1)w .
\end{align*}
\]
Consider the automorphism of $\hat{\mathfrak{sl}}_2$ sending $K \mapsto K$ and

\[e \otimes z^n \mapsto e \otimes z^{n+\theta} \quad f \otimes z^n \mapsto f \otimes z^{n-\theta} \quad h \otimes z^n \mapsto h \otimes z^n + \theta \delta_{n,0} K. \]

The vector $w = (e \otimes 1)^{\mu_1+1} \nu$ satisfies

\[
(e \otimes z^{\geq 1})w = (h \otimes z^{\geq 1})w = (f \otimes z^{\geq 0})w = 0
\]

\[
(h \otimes 1 + (t - 2))w = (t + \mu_1 - \mu_2 - 1)w.
\]

Thus w generates a submodule of $R_{\mu_1,\mu_2,t}$ which is isomorphic to a Verma module twisted by the automorphism for $\theta = 1$. We will denote it by $M_{t+\mu_1-\mu_2-1,t}^{(1)}$.
So we have the following embeddings

(1, +) \quad R_{\mu_1, \mu_2, t} \leftarrow M_{t+\mu_1-\mu_2-1, t}^{(1)}

(1, -) \quad M_{\mu_1-\mu_2-1, t} \hookrightarrow R_{\mu_1, \mu_2, t}

(2, -+) \quad M_{\mu_1-\mu_2-1, t} \hookrightarrow R_{\mu_1, \mu_2, t} \leftarrow M_{t+\mu_2-\mu_1-1, t}^{(1)}

(2, ++) \quad R_{\mu_1, \mu_2, t} \leftarrow M_{t+\mu_2-\mu_1-1, t}^{(1)} \leftarrow M_{t+\mu_1-\mu_2-1, t}^{(1)}

(2, --) \quad M_{\mu_1-\mu_2-1, t} \hookrightarrow M_{\mu_2-\mu_1-1, t} \hookrightarrow R_{\mu_1, \mu_2, t}
So we have the following embeddings

\[(1, +) \quad R_{\mu_1, \mu_2, t} \hookrightarrow M^{(1)}_{t+\mu_1-\mu_2-1, t}\]

\[(1, -) \quad M_{\mu_1-\mu_2-1, t} \hookrightarrow R_{\mu_1, \mu_2, t}\]

\[(2, +) \quad M_{\mu_1-\mu_2-1, t} \hookrightarrow R_{\mu_1, \mu_2, t} \hookrightarrow M^{(1)}_{t+\mu_2-\mu_1-1, t}\]

\[(2, ++) \quad R_{\mu_1, \mu_2, t} \hookrightarrow M^{(1)}_{t+\mu_2-\mu_1-1, t} \hookrightarrow M^{(1)}_{t+\mu_1-\mu_2-1, t}\]

\[(2, --) \quad M_{\mu_1-\mu_2-1, t} \hookrightarrow M_{\mu_2-\mu_1-1, t} \hookrightarrow R_{\mu_1, \mu_2, t}\]

The **goal** of Semikhatov-Sirota ’97 is to describe which modules $M_{\lambda, t}$, $M^{(1)}_{\lambda, t}$ or $R_{\mu_1', \mu_2', t}$ embed into $R_{\mu_1, \mu_2, t}$.
From the above we conclude that $\mu_1 \notin \mathbb{Z}$ and $\mu_2 \notin \mathbb{Z}$ is a necessary condition for $R_{\mu_1,\mu_2,t}$ to be simple.
Simplicity of $R_{\mu_1,\mu_2,t}$

From the above we conclude that $\mu_1 \notin \mathbb{Z}$ and $\mu_2 \notin \mathbb{Z}$ is a necessary condition for $R_{\mu_1,\mu_2,t}$ to be simple.

Theorem (Semikhatov-Sirota ’97)

$R_{\mu_1,\mu_2,t}$ simple \iff $\mu_1 \notin \mathbb{Z}$ and $\mu_2 \notin \mathbb{Z}$

and $\nexists r, s \in \mathbb{Z}_{>0} \mu_1 - \mu_2 = r - st$ or $\mu_2 - \mu_1 = r - st$
The description of the so-called embedding diagrams for $R_{\mu_1, \mu_2, t}$ is the main result of Semikhatov-Sirota '97. These diagrams are labeled by combining I, II, III_± determined by the row
(0), (1, +), (1, −), (2, −−), . . . determined by the column.

<table>
<thead>
<tr>
<th>Condition</th>
<th>$\mu_1, \mu_2 \notin \mathbb{Z}$</th>
<th>$\mu_1 \in \mathbb{Z}, \mu_2 \notin \mathbb{Z}$</th>
<th>$\mu_1, \mu_2 \in \mathbb{Z}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu_1 - \mu_2 \notin \mathbb{K}(t),$</td>
<td>I(0), Eq. (3.2)</td>
<td>I(1), Eq. (3.2)</td>
<td>$\mu_1 \cdot \mu_2 > 0$</td>
</tr>
<tr>
<td>$t \notin \mathbb{Q}$</td>
<td>II(0), Eq. (3.4)</td>
<td>II(1), Eq. (3.4)</td>
<td>$\mu_1 \cdot \mu_2 < 0$</td>
</tr>
<tr>
<td>$\mu_1 - \mu_2 \in \mathbb{K}(t),$</td>
<td>III±(0), Eq. (3.7)</td>
<td>III±(1), Eq. (3.9) and (3.10)</td>
<td></td>
</tr>
<tr>
<td>$t \in \mathbb{Q},$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_1 - \mu_2 \notin \mathbb{Z},$</td>
<td>III±(0), Eq. (3.11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\mu_1 - \mu_2)/t \notin \mathbb{Z}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_1 - \mu_2 \in \mathbb{K}(t),$</td>
<td>III±(0)</td>
<td>III±(2, −−), Eq. (3.13), and III±(2, ++)</td>
<td></td>
</tr>
<tr>
<td>$t \in \mathbb{Q},$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_1 - \mu_2 \notin \mathbb{Z},$</td>
<td>III±(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\mu_1 - \mu_2)/t \in \mathbb{Z}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_1 - \mu_2 \in \mathbb{K}(t),$</td>
<td>III±(0)</td>
<td>III±(2, −−), Eq. (3.35), and III±(2, ++)</td>
<td></td>
</tr>
<tr>
<td>$t \in \mathbb{Q},$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mu_1 - \mu_2 \notin \mathbb{Z},$</td>
<td>III±(0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$(\mu_1 - \mu_2)/t \in \mathbb{Z}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: case $\Pi^0_+(2, -+)$
Introduction to localization on the affine flag variety
Let \(\mathfrak{g} \) be a finite dimensional semisimple Lie algebra over \(\mathbb{C} \). The celebrated theorem of Beilinson-Bernstein ’81 states that the functor of global sections is an exact equivalence of categories between the \(\mathcal{D} \)-modules on the flag variety twisted by the line bundle associated to a regular dominant weight and the \(\mathfrak{g} \)-modules of the corresponding central character.
Let \mathfrak{g} be a finite dimensional semisimple Lie algebra over \mathbb{C}. The celebrated theorem of Beilinson-Bernstein ’81 states that the functor of global sections is an exact equivalence of categories between the \mathcal{D}-modules on the flag variety twisted by the line bundle associated to a regular dominant weight and the \mathfrak{g}-modules of the corresponding central character.

At present the full analogue of this statement in the case of affine Kac-Moody algebras is not known. Postponing definitions, let us start by pointing out related theorems in the case of affine Kac-Moody algebras \mathfrak{g}.
Let \mathfrak{g} be a finite dimensional semisimple Lie algebra over \mathbb{C}. The celebrated theorem of Beilinson-Bernstein ’81 states that the functor of global sections is an exact equivalence of categories between the \mathcal{D}-modules on the flag variety twisted by the line bundle associated to a regular dominant weight and the \mathfrak{g}-modules of the corresponding central character.

At present the full analogue of this statement in the case of affine Kac-Moody algebras is not known. Postponing definitions, let us start by pointing out related theorems in the case of affine Kac-Moody algebras \mathfrak{g}.

In particular, we need to associate a “flag variety” to \mathfrak{g}.
A first possibility, in case \mathfrak{g} is untwisted, is to consider the thin flag variety defined as a quotient of the loop group by the Iwahori group scheme $X^{\text{thin}} = L\hat{G}/L^{+}I$ (Beilinson-Drinfeld, Pappas-Rapoport ’08 and others). Here \hat{G} is a semisimple algebraic group.
A first possibility, in case \mathfrak{g} is untwisted, is to consider the \textit{thin flag variety} defined as a quotient of the loop group by the Iwahori group scheme $X^{\text{thin}} = L \tilde{G}/L^+I$ (Beilinson-Drinfeld, Pappas-Rapoport ’08 and others). Here \tilde{G} is a semisimple algebraic group.

Beilinson-Drinfeld define a category of twisted right \mathcal{D}-modules on X^{thin} and a functor of global sections $\Gamma(X^{\text{thin}}, \cdot)$ landing in $\mathfrak{g}\text{ mod}$. Theorem (Beilinson-Drinfeld, P. Shan ’11)

Let $\lambda + \rho$ be regular antidominant. The functor $\Gamma(X^{\text{thin}}, \cdot)$ between the λ-twisted right \mathcal{D}-modules on X^{thin} and $\mathfrak{g}\text{ mod}$ is exact and faithful.

The basic open question is to describe the essential image of this functor in $\mathfrak{g}\text{ mod}$ (conjectural description by Beilinson ’02, I. Shapiro ’09).
A first possibility, in case \mathfrak{g} is untwisted, is to consider the thin flag variety defined as a quotient of the loop group by the Iwahori group scheme $X^{\text{thin}} = \overset{\circ}{L} G / L^+ I$ (Beilinson-Drinfeld, Pappas-Rapoport ’08 and others). Here G is a semisimple algebraic group.

Beilinson-Drinfeld define a category of twisted right \mathcal{D}-modules on X^{thin} and a functor of global sections $\Gamma(X^{\text{thin}}, \cdot)$ landing in $\mathfrak{g}\text{ mod}$.

Theorem (Beilinson-Drinfeld, P. Shan ’11)

Let $\lambda + \rho$ be regular antidominant. The functor $\Gamma(X^{\text{thin}}, \cdot)$ between the λ-twisted right \mathcal{D}-modules on X^{thin} and $\mathfrak{g}\text{ mod}$ is exact and faithful.
A first possibility, in case \mathfrak{g} is untwisted, is to consider the thin flag variety defined as a quotient of the loop group by the Iwahori group scheme $X^{\text{thin}} = L \circ \check{G} / L^+ I$ (Beilinson-Drinfeld, Pappas-Rapoport ’08 and others). Here \check{G} is a semisimple algebraic group.

Beilinson-Drinfeld define a category of twisted right \mathcal{D}-modules on X^{thin} and a functor of global sections $\Gamma(X^{\text{thin}}, \cdot)$ landing in $\mathfrak{g} \text{ mod}$.

Theorem (Beilinson-Drinfeld, P. Shan ’11)

Let $\lambda + \rho$ be regular antidominant. The functor $\Gamma(X^{\text{thin}}, \cdot)$ between the λ-twisted right \mathcal{D}-modules on X^{thin} and $\mathfrak{g} \text{ mod}$ is exact and faithful.

The basic open question is to describe the essential image of this functor in $\mathfrak{g} \text{ mod}$ (conjectural description by Beilinson ’02, I. Shapiro ’09).
A second possibility is to consider the Kashiwara flag scheme X. As we will detail later, it is a scheme, not locally of finite type, but having an open cover by affine spaces of countable dimension. The finite dimensional Schubert cells X_w can be defined as subschemes of X and one again has a notion of twisted \mathcal{D}-modules on X and a functor of global sections.
A second possibility is to consider the Kashiwara flag scheme X. As we will detail later, it is a scheme, not locally of finite type, but having an open cover by affine spaces of countable dimension. The finite dimensional Schubert cells X_w can be defined as subschemes of X and one again has a notion of twisted \mathcal{D}-modules on X and a functor of global sections.

Recall the notion of the Verma module

$$M(\mu) = \mathcal{U}\mathfrak{g} \otimes_{\mathcal{U}\mathfrak{b}} \mathbb{C}_\mu$$

of highest weight $\mu \in \mathfrak{h}^*$.

A second possibility is to consider the Kashiwara flag scheme X. As we will detail later, it is a scheme, not locally of finite type, but having an open cover by affine spaces of countable dimension. The finite dimensional Schubert cells X_w can be defined as subschemes of X and one again has a notion of twisted \mathcal{D}-modules on X and a functor of global sections.

Recall the notion of the Verma module

$$M(\mu) = \mathcal{U} \mathfrak{g} \otimes \mathcal{U} \mathfrak{b} \mathbb{C}_\mu$$

of highest weight $\mu \in \mathfrak{h}^*$.

Theorem (Kashiwara-Tanisaki ’95)

The global sections of the \ast- and $!$-direct image from X_w identify with $M(w \cdot \lambda)^\vee$ and $M(w \cdot \lambda)$ respectively when $\lambda + \rho$ is regular antidominant.
The last two theorems can be combined into

Theorem (Frenkel-Gaitsgory ’09)

Let $\lambda + \rho$ be regular antidominant. $\Gamma(X^{\text{thin}}, \cdot)$ defines an exact equivalence between the category of λ-twisted right \mathcal{D}-modules on X^{thin} that are equivariant for the pro-unipotent radical of $L^+ I$ and the block of category \mathcal{O} of \mathfrak{g} defined by λ.
Setup
Affine Kac-Moody algebras

- $(\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})$ affine Kac-Moody data
Affine Kac-Moody algebras

- \((\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})\) affine Kac-Moody data
- \(\mathfrak{g}\) affine Kac-Moody (Lie) algebra
Affine Kac-Moody algebras

- \((\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})\) affine Kac-Moody data
- \(\mathfrak{g}\) affine Kac-Moody (Lie) algebra
- \(\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}\) triangular decomposition into positive and negative part \(\mathfrak{n}\) and \(\mathfrak{n}^-\) and the Cartan subalgebra \(\mathfrak{h}\)
Affine Kac-Moody algebras

- \((\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})\) affine Kac-Moody data
- \(\mathfrak{g}\) affine Kac-Moody (Lie) algebra
- \(\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}\) triangular decomposition into positive and negative part \(\mathfrak{n}\) and \(\mathfrak{n}^-\) and the Cartan subalgebra \(\mathfrak{h}\)
- \(\mathfrak{h}^{(-)} = \mathfrak{n}^{(-)} \oplus \mathfrak{h}\) Borel and opposite Borel subalgebra
Affine Kac-Moody algebras

- $(\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})$ affine Kac-Moody data
- \mathfrak{g} affine Kac-Moody (Lie) algebra
- $\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}$ triangular decomposition into positive and negative part \mathfrak{n} and \mathfrak{n}^- and the Cartan subalgebra \mathfrak{h}
- $\mathfrak{h}(-) = \mathfrak{n}(-) \oplus \mathfrak{h}$ Borel and opposite Borel subalgebra
- $e_i \in \mathfrak{n}, f_i \in \mathfrak{n}^-$ simple generators, $i \in I$
Affine Kac-Moody algebras

- \((\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})\) affine Kac-Moody data
- \(\mathfrak{g}\) affine Kac-Moody (Lie) algebra
- \(\mathfrak{g} = \mathfrak{n}^- \oplus \mathfrak{h} \oplus \mathfrak{n}\) triangular decomposition into positive and negative part \(\mathfrak{n}\) and \(\mathfrak{n}^-\) and the Cartan subalgebra \(\mathfrak{h}\)
- \(\mathfrak{h}^{(-)} = \mathfrak{n}^{(-)} \oplus \mathfrak{h}\) Borel and opposite Borel subalgebra
- \(e_i \in \mathfrak{n}, f_i \in \mathfrak{n}^-\) simple generators, \(i \in I\)
- \(\Phi = \Phi^0 \sqcup \Phi^0\) positive and negative roots of \(\mathfrak{g}\)
• n_l^- Lie ideal of n^- given by the root spaces associated to the negative roots of height $\geq l$, $l \in \mathbb{Z}_{\geq 0}$, similarly n_i.
• n_l^- Lie ideal of n^- given by the root spaces associated to the negative roots of height $\geq l$, $l \in \mathbb{Z}_{\geq 0}$, similarly n_l

• $g_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i$, $i \in I$
• n_l^- Lie ideal of n^- given by the root spaces associated to the negative roots of height $\geq l$, $l \in \mathbb{Z}_{\geq 0}$, similarly n_l

• $g_i = \mathbb{C} f_i \oplus h \oplus \mathbb{C} e_i$, $i \in I$

• $p_i^- = \mathbb{C} e_i \oplus b^-$ and $n_i \oplus p_i^- = g$, $i \in I$
• \(n^- \) Lie ideal of \(n^- \) given by the root spaces associated to the negative roots of height \(\geq l, \ l \in \mathbb{Z}_{\geq 0} \), similarly \(n_l \)
• \(g_i = \mathbb{C} f_i \oplus h \oplus \mathbb{C} e_i, \ i \in I \)
• \(p^-_i = \mathbb{C} e_i \oplus b^- \) and \(n_i \oplus p^-_i = g, \ i \in I \)
• \(p_i = \mathbb{C} f_i \oplus b \) and \(n^-_i \oplus p_i = g, \ i \in I \)
• n^-_l Lie ideal of n^- given by the root spaces associated to the negative roots of height $\geq l$, $l \in \mathbb{Z}_{\geq 0}$, similarly n_l

• $g_i = \mathbb{C}f_i \oplus \mathfrak{h} \oplus \mathbb{C}e_i$, $i \in I$

• $p^-_i = \mathbb{C}e_i \oplus b^-$ and $n_i \oplus p^-_i = g$, $i \in I$

• $p_i = \mathbb{C}f_i \oplus b$ and $n^-_i \oplus p_i = g$, $i \in I$

• W Weyl group of g. It acts linearly on \mathfrak{h}^*. For $i \in I$ there is a simple reflection $s_i \in W$.
• n_l^- Lie ideal of n^- given by the root spaces associated to the negative roots of height $\geq l$, $l \in \mathbb{Z}_{\geq 0}$, similarly n_l

• $g_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i$, $i \in I$

• $p_i^- = \mathbb{C} e_i \oplus b^-$ and $n_i \oplus p_i^- = g$, $i \in I$

• $p_i = \mathbb{C} f_i \oplus b$ and $n_i^- \oplus p_i = g$, $i \in I$

• W Weyl group of g. It acts linearly on \mathfrak{h}^*. For $i \in I$ there is a simple reflection $s_i \in W$.

• $\rho \in \mathfrak{h}^*$ such that $\rho(h_i) = 1$ for all $i \in I$
• n_l^- Lie ideal of n^- given by the root spaces associated to the negative roots of height $\geq l$, $l \in \mathbb{Z}_{\geq 0}$, similarly n_l

• $g_i = \mathbb{C} f_i \oplus h \oplus \mathbb{C} e_i$, $i \in I$

• $p_i^- = \mathbb{C} e_i \oplus b^-$ and $n_i \oplus p_i^- = g$, $i \in I$

• $p_i = \mathbb{C} f_i \oplus b$ and $n_i^- \oplus p_i = g$, $i \in I$

• W Weyl group of g. It acts linearly on h^*. For $i \in I$ there is a simple reflection $s_i \in W$.

• $\rho \in h^*$ such that $\rho(h_i) = 1$ for all $i \in I$

• $w \cdot \lambda = w(\lambda + \rho) - \rho$ dot-action of W on h^*
- n_l^- Lie ideal of n^- given by the root spaces associated to the negative roots of height $\geq l$, $l \in \mathbb{Z}_{\geq 0}$, similarly n_l

- $g_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i$, $i \in I$

- $p_i^- = \mathbb{C} e_i \oplus b^-$ and $n_i \oplus p_i^- = g$, $i \in I$

- $p_i = \mathbb{C} f_i \oplus b$ and $n_i^- \oplus p_i = g$, $i \in I$

- W Weyl group of g. It acts linearly on \mathfrak{h}^*. For $i \in I$ there is a simple reflection $s_i \in W$.

- $\rho \in \mathfrak{h}^*$ such that $\rho(h_i) = 1$ for all $i \in I$

- $w \cdot \lambda = w(\lambda + \rho) - \rho$ dot-action of W on \mathfrak{h}^*

- lattice $P \subseteq \mathfrak{h}^*$ such that $\alpha_i \in P$ and $P(h_i) \subseteq \mathbb{Z}$ for all $i \in I$
Group schemes

- Pro-unipotent group scheme $U = \varprojlim_i \exp(n/n_i)$
• Pro-unipotent group scheme $U = \varprojlim \mathbb{exp}(n/n_l)$
• Pro-unipotent group scheme $U(\Psi) \subseteq U$, where $\Psi \subseteq \Phi^{>0}$ satisfies $(\Psi + \Psi) \cap \Phi^{>0} \subseteq \Psi$, similarly $U^-(\Psi) \subseteq U^-$.
• Pro-unipotent group scheme $U = \varprojlim_n \exp(n/n_i)$
• Pro-unipotent group scheme $U(\Psi) \subseteq U$, where $\Psi \subseteq \Phi^>0$ satisfies $(\Psi + \Psi) \cap \Phi^>0 \subseteq \Psi$, similarly $U^-(\Psi) \subseteq U^-$.
• Pro-unipotent group scheme $U_i^- = U^-(\Phi_i^<0)$, where $\Phi_i^<0 \subseteq \Phi^<0$ is the subset of negative roots of height $\geq i$.

T = Spec $\mathbb{C}[P]$ ~ = $\text{G_{mdim}}$, algebraic torus

$B(\cdot)$ = $T \bowtie U(\cdot)$, Borel and opposite Borel group scheme

G_i = reductive group determined by g_i and P_i = $G_i \bowtie U(\Phi^>0 \{-\alpha_i\})$ and similarly P_i^-.
Group schemes

- Pro-unipotent group scheme $U = \lim_{\leftarrow} \exp(n/n_i)$
- Pro-unipotent group scheme $U(\Psi) \subseteq U$, where $\Psi \subseteq \Phi^{>0}$ satisfies $(\Psi + \Psi) \cap \Phi^{>0} \subseteq \Psi$, similarly $U^-(\Psi) \subseteq U^-$.
- Pro-unipotent group scheme $U_i^- = U^-(\Phi_i^{<0})$, where $\Phi_i^{<0} \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq i$.
- $T = \text{Spec } \mathbb{C}[P] \cong \mathbb{G}_m^{\dim \mathfrak{h}}$ algebraic torus
• Pro-unipotent group scheme $U = \varprojlim_I \exp(n/n_I)$

• Pro-unipotent group scheme $U(\Psi) \subseteq U$, where $\Psi \subseteq \Phi^>0$ satisfies $(\Psi + \Psi) \cap \Phi^>0 \subseteq \Psi$, similarly $U^-(\Psi) \subseteq U^-$.

• Pro-unipotent group scheme $U_i^- = U^-(\Phi_i^{<0})$, where $\Phi_i^{<0} \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq i$.

• $T = \text{Spec } \mathbb{C}[P] \cong \mathbb{G}_m^\text{dim} \mathfrak{h}$ algebraic torus

• $B^{(-)} = T \rtimes U^{(-)}$ Borel and opposite Borel group scheme
Group schemes

- Pro-unipotent group scheme $U = \varprojlim \exp(n/n_i)$
- Pro-unipotent group scheme $U(\Psi) \subseteq U$, where $\Psi \subseteq \Phi^{>0}$ satisfies $(\Psi + \Psi) \cap \Phi^{>0} \subseteq \Psi$, similarly $U^- (\Psi) \subseteq U^-$.
- Pro-unipotent group scheme $U^-_i = U^- (\Phi^{<0}_i)$, where $\Phi^{<0}_i \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq l$.
- $T = \text{Spec } \mathbb{C}[P] \cong \mathbb{G}_m^{\text{dim} h}$ algebraic torus
- $B^{(-)} = T \ltimes U^{(-)}$ Borel and opposite Borel group scheme
- G_i reductive group determined by \mathfrak{g}_i and P
Group schemes

- Pro-unipotent group scheme $U = \varprojlim_i \exp(n/n_i)$
- Pro-unipotent group scheme $U(\Psi) \subseteq U$, where $\Psi \subseteq \Phi^{>0}$ satisfies $(\Psi + \Psi) \cap \Phi^{>0} \subseteq \Psi$, similarly $U^-(\Psi) \subseteq U^-.$
- Pro-unipotent group scheme $U_i^- = U^-(\Phi_i^{<0})$, where $\Phi_i^{<0} \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq l$.
- $T = \text{Spec } \mathbb{C}[P] \cong \mathbb{G}_m^{\dim h}$ algebraic torus
- $B^{(-)} = T \times U^{(-)}$ Borel and opposite Borel group scheme
- G_i reductive group determined by g_i and P
- $P_i = G_i \times U(\Phi^{>0} \setminus \{\alpha_i\})$ and similarly P_i^-
Out of the affine Kac-Moody data and the lattice P Kashiwara ’90 constructs a scheme G with a distinguished point $1 \in G$ and commuting left and right actions of P_i^- and P_i respectively, for all $i \in I$.
Out of the affine Kac-Moody data and the lattice P Kashiwara ’90 constructs a scheme G with a distinguished point $1 \in G$ and commuting left and right actions of P_i^- and P_i respectively, for all $i \in I$.

The Kashiwara flag scheme is defined as $X = G/B$ (quotient by a locally free action). The so-called Tits extension $\widetilde{\mathcal{W}}$ of \mathcal{W} acts on G and X. On T-invariant subsets of X, the action of $\widetilde{\mathcal{W}}$ factors through \mathcal{W}.
Basic properties

- \(U^\sim 1B \simeq \mathbb{A}^\infty \) is an open subscheme of \(X \) called big cell.
Basic properties

- \mathbb{A}^∞ is an open subscheme of X called big cell.
- $X = \bigcup_{w \in W} N(X_w)$, where $N(X_w) = wU^{-1}B$
Basic properties

- $U^{-1}B \cong \mathbb{A}^\infty$ is an open subscheme of X called big cell.
- $X = \bigcup_{w \in W} N(X_w)$, where $N(X_w) = wU^{-1}B$
- $X = \bigcup_{w \in W} X^{\leq w}$, where $X^{\leq w} = \bigcup_{v \leq w} N(X_v)$ is B^--invariant and quasi-compact and \leq is the Bruhat partial order
Basic properties

- $U^{-1}B \cong \mathbb{A}^\infty$ is an open subscheme of X called big cell.
- $X = \bigcup_{w \in W} N(X_w)$, where $N(X_w) = wU^{-1}B$
- $X = \bigcup_{w \in W} X^{\leq w}$, where $X^{\leq w} = \bigcup_{v \leq w} N(X_v)$ is B^--invariant and quasi-compact and \leq is the Bruhat partial order
- There is a line bundle $\mathcal{O}_X(\lambda)$ on X associated to $\lambda \in P$.
For fixed w and all $l \in \mathbb{Z}_{>0}$ large enough U_l^- acts locally freely on $X_{\leq w}$. The quotient $X_{l}^{\leq w} = U_l^- \backslash X_{\leq w}$ is a smooth quasi-projective variety (Shan-Varagnolo-Vasserot ’14).
For fixed w and all $l \in \mathbb{Z}_{>0}$ large enough U_l^- acts locally freely on $X_{\leq w}$. The quotient $X_l^{\leq w} = U_l^- \backslash X_{\leq w}$ is a smooth quasi-projective variety (Shan-Varagnolo-Vasserot ’14).

We have for $l_1 \geq l_2$ large enough a commutative diagram

\[
\begin{array}{ccc}
X_{l_1}^{\leq w} & \xrightarrow{p_{l_2}^{l_1}} & X_{l_2}^{\leq w} \\
\downarrow & & \downarrow \\
X_w & \rightarrow & X_{l_2}^{\leq w} \\
\end{array}
\]

The fibers of the projection $p_{l_2}^{l_1}$ are affine spaces and \hookrightarrow are closed embeddings.
For fixed w and all $l \in \mathbb{Z}_{>0}$ large enough U_l^- acts locally freely on $X^{\leq w}$. The quotient $X_i^{\leq w} = U_l^- \backslash X^{\leq w}$ is a smooth quasi-projective variety (Shan-Varagnolo-Vasserot ’14).

We have for $l_1 \geq l_2$ large enough a commutative diagram

\[
\begin{array}{ccc}
X_{l_1}^{\leq w} & \xrightarrow{p_{l_1}^{l_2}} & X_{l_2}^{\leq w} \\
\downarrow & & \downarrow \\
X_w & & X_w
\end{array}
\]

The fibers of the projection $p_{l_2}^{l_1}$ are affine spaces and \hookrightarrow are closed embeddings. Subsequently we will always assume that l is large enough.
Twisted \mathcal{D}-modules on X

$\text{Hol}(\mathcal{D}_{X_{\lambda}^{\leq w}}, \overline{X_w})$ Category of holonomic right \mathcal{D}-modules on $X_{\lambda}^{\leq w}$ twisted by $\mathcal{O}_{X_{\lambda}^{\leq w}}$, $\lambda \in P$, with support in $\overline{X_w}$
Twisted \mathcal{D}-modules on X

$\text{Hol}(\mathcal{D}_{X_{\leq w}(\lambda), X_w})$ Category of holonomic right \mathcal{D}-modules on $X_{\leq w}$ twisted by $\mathcal{O}_{X_{\leq w}(\lambda)}$, $\lambda \in P$, with support in X_w

- It is an abelian category and every object has finite length.
Twisted \mathcal{D}-modules on X

$\text{Hol}(\mathcal{D}_{X^{\leq w}_{\lambda}}(\lambda), \overline{X_w})$ Category of holonomic right \mathcal{D}-modules on $X^{\leq w}_{\lambda}$ twisted by $\mathcal{O}_{X^{\leq w}_{\lambda}}(\lambda)$, $\lambda \in P$, with support in $\overline{X_w}$

- It is an abelian category and every object has finite length.
- It has a contravariant exact auto-equivalence \mathbb{D}, the holonomic duality.
Twisted \mathcal{D}-modules on X

$\text{Hol}(\mathcal{D}_{X^w}^\leq (\lambda), \overline{X_w})$ Category of holonomic right \mathcal{D}-modules on X^w twisted by $\mathcal{O}_{X^w}^\leq (\lambda)$, $\lambda \in P$, with support in $\overline{X_w}$

- It is an abelian category and every object has finite length.
- It has a contravariant exact auto-equivalence \mathbb{D}, the holonomic duality.
- $p_{l_2}^{l_1} : \text{Hol}(\mathcal{D}_{X^w}^\leq (\lambda), \overline{X_w}) \rightarrow \text{Hol}(\mathcal{D}_{X^w}^\leq (\lambda), \overline{X_w})$ exact equivalence
\[\text{Hol}(\lambda, \overline{X_w}, X^{\leq w}, l_0) \ni M = \left((M_l)_{l\geq l_0}, (\gamma_{l_2}^l)_{l_1 \geq l_2 \geq l_0} \right) \]

\[\text{Hol}(\mathcal{D}_{X_l^{\leq w}}(\lambda), \overline{X_w}) \ni M_l \]

\[\gamma_{l_2}^{l_1} : p_{l_2*} M_{l_1} \xrightarrow{\sim} M_{l_2} \quad \gamma_{l_3}^{l_1} = \gamma_{l_3}^{l_2} \circ p_{l_3*} \gamma_{l_2}^{l_1}, \quad l_1 \geq l_2 \geq l_3 \geq l_0 \]
\[
\text{Hol}(\lambda, \overline{X_w}, X^{\leq w}, l_0) \ni \mathcal{M} = \left((\mathcal{M}_l)_{l \geq l_0}, (\gamma_{l_2}^{l_1})_{l_1 \geq l_2 \geq l_0} \right)
\]

\[
\text{Hol}(\mathcal{D}_{X_1^{\leq w}}(\lambda), \overline{X_w}) \ni \mathcal{M}_l
\]

\[
\gamma_{l_2}^{l_1} : p_{l_2}^{l_1}_* \mathcal{M}_{l_1} \xrightarrow{\cong} \mathcal{M}_{l_2} \quad \gamma_{l_3}^{l_1} = \gamma_{l_3}^{l_2} \circ p_{l_3}^{l_2}_* \gamma_{l_2}^{l_1}, \quad l_1 \geq l_2 \geq l_3 \geq l_0
\]

For any \(l \geq l_0 \), \(\mathcal{M} \mapsto \mathcal{M}_l \) is an exact equivalence.
\[\text{Hol}(\lambda, \overline{X_w}, \underline{X}^{\leq w}, l_0) \ni \mathcal{M} = \left((\mathcal{M}_l)_{l \geq l_0}, (\gamma_{l_2}^l)_{l_1 \geq l_2 \geq l_0} \right) \]

\[\text{Hol}(\mathcal{D}_{X_{\leq w}}(\lambda), \overline{X_w}) \ni \mathcal{M}_l \]

\[\gamma_{l_2}^{l_1} : p_{l_2}^{l_1}_* \mathcal{M}_{l_1} \xrightarrow{\cong} \mathcal{M}_{l_2} \quad \gamma_{l_3}^{l_1} = \gamma_{l_3}^{l_2} \circ p_{l_3}^{l_2}_* \gamma_{l_2}^{l_1} , \ l_1 \geq l_2 \geq l_3 \geq l_0 \]

For any \(l \geq l_0 \), \(\mathcal{M} \mapsto \mathcal{M}_l \) is an exact equivalence.

Taking limits we get rid of the auxiliary choices \(\overline{X_w}, \underline{X}^{\leq w} \) and \(l_0 \) and define the category \(\text{Hol}(\lambda) \) of \(\lambda \)-twisted holonomic right \(\mathcal{D} \)-modules on \(X \).
For $\mathcal{M} \in \text{Hol}(\lambda)$ and $j \in \mathbb{Z}_{\geq 0}$ define

$$H^j(X, \mathcal{M}) = \lim_{\leftarrow l} H^j(X_{\leq w}^l, \mathcal{M}_l),$$

where $H^j(X_{\leq w}^l, \mathcal{M}_l)$ are the sheaf cohomology groups.
For $\mathcal{M} \in \text{Hol}(\lambda)$ and $j \in \mathbb{Z}_{\geq 0}$ define

$$H^j(X, \mathcal{M}) = \lim_{\leftarrow l} H^j(X_{i}^{\leq w}, \mathcal{M}_{l}),$$

where $H^j(X_{i}^{\leq w}, \mathcal{M}_{l})$ are the sheaf cohomology groups. If $\nu \in \mathfrak{g}$ there is a $m \in \mathbb{Z}_{\geq 0}$ such that $[\nu, \mathfrak{n}_{i+m}] \subseteq \mathfrak{n}_{i}$ for all l. Then ν defines a \mathbb{C}-linear map $H^j(X_{i+m}^{\leq w}, \mathcal{M}_{l+m}) \rightarrow H^j(X_{i}^{\leq w}, \mathcal{M}_{l})$.

For $\mathcal{M} \in \text{Hol}(\lambda)$ and $j \in \mathbb{Z}_{\geq 0}$ define

$$H^j(X, \mathcal{M}) = \lim_{\leftarrow l} H^j(X_i^{\leq w}, \mathcal{M}_l),$$

where $H^i(X_i^{\leq w}, \mathcal{M}_l)$ are the sheaf cohomology groups. If $\nu \in \mathfrak{g}$ there is a $m \in \mathbb{Z}_{\geq 0}$ such that $[\nu, \mathfrak{n}^-] \subseteq \mathfrak{n}^-$ for all l. Then ν defines a \mathbb{C}-linear map $H^i(X_{l+m}^{\leq w}, \mathcal{M}_{l+m}) \to H^i(X_{l}^{\leq w}, \mathcal{M}_{l})$. In this way $H^i(X, \mathcal{M})$ becomes a \mathfrak{g}-module.
Cohomology groups

For $\mathcal{M} \in \text{Hol}(\lambda)$ and $j \in \mathbb{Z}_{\geq 0}$ define

$$H^j(X, \mathcal{M}) = \lim_{\leftarrow l} H^j(X^{\leq w}_l, \mathcal{M}_l),$$

where $H^j(X^{\leq w}_l, \mathcal{M}_l)$ are the sheaf cohomology groups. If $\nu \in \mathfrak{g}$ there is a $m \in \mathbb{Z}_{\geq 0}$ such that $[\nu, \mathfrak{n}_{l+m}^-] \subseteq \mathfrak{n}_l^-$ for all l. Then ν defines a \mathbb{C}-linear map $H^j(X^{\leq w}_{l+m}, \mathcal{M}_{l+m}) \to H^j(X^{\leq w}_l, \mathcal{M}_l)$. In this way $H^j(X, \mathcal{M})$ becomes a \mathfrak{g}-module.

Define

$$\overline{H}^j(X, \mathcal{M}) = \bigoplus_{\mu \in \mathfrak{h}^*} H^j(X, \mathcal{M})_{\mu},$$

where $(\cdot)_{\mu}$ denotes the generalized weight space associated to μ. This is a \mathfrak{g}-submodule of $H^j(X, \mathcal{M})$.

26
Coordinates on $N(X_w)$

For $w \in W$ abbreviate

$$U_w^- = U^- (\Phi^< 0 \cap w\Phi^< 0) \subseteq U^-$$
$$U_w = U (\Phi^> 0 \cap w\Phi^< 0) \subseteq U.$$

The map $(u_1, u_2) \mapsto u_1 u_2 w 1 B$ defines a T-equivariant isomorphism of schemes

$$U_w^- \times U_w \xrightarrow{\cong} N(X_w).$$

The image of $1 \times U_w$ is the (finite dimensional) Schubert cell X_w in X.

27
Let \(w \) be such that \(s_iw < w \).

Lemma

We have \(X_w \cap s_iX_w = s_iX_w \setminus X_{s_iw} = X_w \setminus s_iX_{s_iw} \). In the above coordinates on \(N(X_w) \) and \(s_iN(X_w) = N(X_{s_iw}) \) the identity map \(s_iX_w \setminus X_{s_iw} \to X_w \setminus s_iX_{s_iw} \) is the isomorphism

\[
(U^\alpha_i \setminus 1) \times U_{s_iw} \to (U(\alpha_i) \setminus 1) \times U_{s_iw}
\]

\[
(e^{zf_i}, h_i(z)^{-1}uh_i(z)) \mapsto (e^{z^{-1}e_i}, \dot{s}_i^{-1}\tilde{u}(z)\dot{s}_i).
\]

Here \(z \in \mathbb{G}_m \) and \(\dot{s}_i = e^{e_i}e^{-f_i}e^{e_i} \). \(h_i \) is considered as a group homomorphism \(\mathbb{G}_m \to T \). Given \(u \) and \(z \), \(\tilde{u}(z) \in U_{s_iw} \) is uniquely determined by the condition \(e^{ze_i}u \in \tilde{u}(z)U(\Phi^0 \cap s_iw\Phi^0) \).
For $s_iw < w$ consider the locally closed affine embedding

$$i_{w,l} : X_w \cap s_iX_w \hookrightarrow X_{\leq w}.$$
For $s_i w < w$ consider the locally closed affine embedding

$$i_{w,l} : X_w \cap s_i X_w \hookrightarrow X_{\leq w}.$$

Definition

Define the right $D_{X_{\leq w}}(\lambda)$-module for $\lambda \in P$ and $\alpha \in \mathbb{C}$

$$\mathcal{R}_{w}(\lambda, \alpha)_l = i_{w,l} \left(\left(\Omega_{\mathbb{C}^X}^{(\alpha)} \boxtimes \Omega_{s_iU_{s_iw}} \right) \otimes i_{w,l}^* \mathcal{O}_{X_{\leq w}}(\lambda) \right) \quad ? \in \{*, !\}.$$
For $s_i w < w$ consider the locally closed affine embedding

$$i_{w,l} : X_w \cap s_i X_w \hookrightarrow X^{\leq w}_l.$$

Definition

Define the right $\mathcal{D}_{X^{\leq w}_l}(\lambda)$-module for $\lambda \in P$ and $\alpha \in \mathbb{C}$

$$\mathcal{R}_{w}(\lambda, \alpha)_l = i_{w,l？} \left(\left(\Omega^{(\alpha)}_{\mathbb{C}^x} \boxtimes \Omega^{s_i U_{s_i w}}
ight) \otimes i^*_w, l \mathcal{O}_{X^{\leq w}_l(\lambda)} \right) \quad ? \in \{*, !\}.$$

Here we introduced the right $\mathcal{D}_{\mathbb{C}^x}$-module

$$\Omega^{(\alpha)}_{\mathbb{C}^x} = \mathcal{D}_{\mathbb{C}^x}/(x \partial_x - \alpha)\mathcal{D}_{\mathbb{C}^x}.$$

The coordinate x on \mathbb{C}^x is the one of $U(\alpha_i)$. Thus $x = \infty$ corresponds to $X_{s_i w}$.

29
For $s_i w < w$ consider the locally closed affine embedding

$$i_{w, l} : X_w \cap s_i X_w \hookrightarrow X_{l \leq w}.$$

Definition

Define the right $\mathcal{D}_{X_{\leq w}^i}(\lambda)$-module for $\lambda \in P$ and $\alpha \in \mathbb{C}$

$$\mathcal{R}_{w}(\lambda, \alpha)_l = i_{w, l} \left(\left(\Omega^{(\alpha)}_{\mathbb{C}^x} \boxtimes \Omega_{s_i u_{s_i w}}^i \right) \otimes i_{w, l}^* \mathcal{O}_{X_{l \leq w}^i}(\lambda) \right) \ ? \in \{*, !\}.$$

Here we introduced the right $\mathcal{D}_{\mathbb{C}^x}$-module

$$\Omega^{(\alpha)}_{\mathbb{C}^x} = \mathcal{D}_{\mathbb{C}^x} / (x \partial_x - \alpha) \mathcal{D}_{\mathbb{C}^x}. \text{ The coordinate } x \text{ on } \mathbb{C}^x \text{ is the one of } U(\alpha_i). \text{ Thus } x = \infty \text{ corresponds to } X_{s_i w}.$$

Then $\mathcal{R}_{w}(\lambda, \alpha) = (\mathcal{R}_{w}(\lambda, \alpha)_l)_{l \geq l_0} \in \text{Hol}(\lambda)$, where the $\gamma^{l_1}_{l_2}$ are induced.
Before describing the cohomology of these \mathcal{D}-modules, let us pause briefly and explain that $X_w \cap s_i X_w$ can be understood as orbits for the subgroup $L^+ I \cap s_i L^+ I$ of the Iwahori group $L^+ I$ acting on X^{thin}. Indeed, for $s_i w > w$ the $L^+ I \cap s_i L^+ I$-orbit X_w is also a $L^+ I \cap s_i L^+ I$-orbit, as is $s_i X_w$. For $s_i w < w$ the $L^+ I$-orbit X_w splits into two $L^+ I \cap s_i L^+ I$-orbits $X_w = (X_w \cap s_i X_w) \sqcup s_i X_{s_i w}$.
Before describing the cohomology of these \mathcal{D}-modules, let us pause briefly and explain that $X_w \cap s_iX_w$ can be understood as orbits for the subgroup $L^+/I \cap s_iL^+/I$ of the Iwahori group L^+/I acting on X^{thin}.

Indeed, for $s_iw > w$ the L^+/I-orbit X_w is also a $L^+/I \cap s_iL^+/I$-orbit, as is s_iX_w. For $s_iw < w$ the L^+/I-orbit X_w splits into two $L^+/I \cap s_iL^+/I$-orbits

$$X_w = (X_w \cap s_iX_w) \sqcup s_iX_{s_iw}.$$
The case of \mathfrak{sl}_2

The arrows indicate the closure relations.
Overview of results
We will identify the **global sections of** $\mathcal{R}_w(\lambda, \alpha)$ as a g-module for some choices of the parameters $\omega, w, \lambda, \alpha$ following the methods of Kashiwara-Tanisaki '95. We thereby extend several of their results to a class of non-highest weight representations which we call relaxed highest weight because they generalize the \widehat{sl}_2-representations that we have seen earlier.
We will identify the **global sections of** $\mathcal{R}_w(\lambda, \alpha)$ as a \mathfrak{g}-module for some choices of the parameters $?, w, \lambda, \alpha$ following the methods of Kashiwara-Tanisaki ’95. We thereby extend several of their results to a class of non-highest weight representations which we call relaxed highest weight because they generalize the $\widehat{\mathfrak{sl}}_2$-representations that we have seen earlier.

We will start by discussing the \mathfrak{h}-module structure.
We will identify the **global sections** of $\mathcal{R}_{w}(\lambda, \alpha)$ as a g-module for some choices of the parameters w, λ, α following the methods of Kashiwara-Tanisaki ’95. We thereby extend several of their results to a class of non-highest weight representations which we call relaxed highest weight because they generalize the $\widehat{\mathfrak{sl}}_2$-representations that we have seen earlier.

We will start by discussing the \mathfrak{h}-module structure.

We then introduce **candidate g-modules**.
We will identify the **global sections of** $\mathcal{R}_{w}(\lambda, \alpha)$ as a \mathfrak{g}-module for some choices of the parameters $?, w, \lambda, \alpha$ following the methods of Kashiwara-Tanisaki '95. We thereby extend several of their results to a class of non-highest weight representations which we call relaxed highest weight because they generalize the $\widehat{\mathfrak{sl}}_2$-representations that we have seen earlier.

We will start by discussing the \mathfrak{h}-module structure.

We then introduce **candidate \mathfrak{g}-modules**.

We identify these candidate \mathfrak{g}-modules with the (dual of the) \mathfrak{g}-module of global sections.
Theorem

We have isomorphisms of \mathfrak{h}-modules

1. $H^0(X^{\leq w}, R_{*w}(\lambda, \alpha)_l) \cong \mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} S(n_i^-/n_i^-) \otimes_{\mathbb{C}} \mathbb{C}_{s_i w \cdot \lambda + \alpha \alpha_i}$

2. $H^0(X, R_{*w}(\lambda, \alpha)) \cong \mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} S n_i^- \otimes_{\mathbb{C}} \mathbb{C}_{s_i w \cdot \lambda + \alpha \alpha_i}$

Here z has weight α_i.
Consider the following factorization of $i_{w,l} : X_w \cap s_i X_w \hookrightarrow X_l^{\leq w}$

$$X_w \cap s_i X_w \hookrightarrow X_w \hookrightarrow N(X_w)_l \cong (U_l^- \setminus U_w^-) \times U_w \hookrightarrow X_l^{\leq w}.$$
Consider the following factorization of $i_{w,l} : X_w \cap s_i X_w \hookrightarrow X_{l^{\leq w}}$

$$X_w \cap s_i X_w \hookrightarrow X_w \hookrightarrow N(X_w)_I \cong (U_l^- \setminus U_w^-) \times U_w \hookrightarrow X_{l^{\leq w}}.$$

The first and third embedding are open and affine, while the second embedding is closed.
Consider the following factorization of $i_{w,l} : X_w \cap s_i X_w \hookrightarrow X^\leq_w$

$$X_w \cap s_i X_w \hookrightarrow X_w \hookrightarrow N(X_w)_l \cong (U_l^- \setminus U^-_w) \times U_w \hookrightarrow X^\leq_w.$$

The first and third embedding are open and affine, while the second embedding is closed.

By definition $H^0(X^\leq_w, \mathcal{R}_{*w}(\lambda, \alpha)_l) \cong H^0(N(X_w)_l, \mathcal{R}_{*w}(\lambda, \alpha)_l)$

and there is the explicit description of the \ast-direct image w.r.t. the second embedding $\kappa_{w,l} : X_w \hookrightarrow N(X_w)_l$

$$\kappa_{w,l} \ast \mathcal{M} = \kappa_{w,l} \cdot \mathcal{M} \otimes \mathbb{C}[\partial_1, \ldots, \partial_r],$$

where \mathcal{M} is any right \mathcal{D}-module on X_w and $r = \dim U_l^- \setminus U_w^-$.
Lemma

\[H^j(X_{i \leq w}^\leq w, R_*w(\lambda, \alpha)_l) = 0 \] and consequently
\[H^j(X, R_*w(\lambda, \alpha)) = 0 \] for \(j > 0 \).
Cohomology vanishing

Lemma

\[H^j(X_{\leq w}, R_{*w}(\lambda, \alpha)_l) = 0 \text{ and consequently } H^j(X, R_{*w}(\lambda, \alpha)) = 0 \text{ for } j > 0. \]

This is again proven using the fact that

\[H^j(X_{\leq w}, R_{*w}(\lambda, \alpha)_l) \cong H^j(N(X_w)_l, R_{*w}(\lambda, \alpha)_l) \] and the above explicit description of the \(*\)-direct image.
Definition

Define the \mathfrak{sl}_2-module for $\Lambda, \alpha \in \mathbb{C}$

$$R^{\mathfrak{sl}_2}(\Lambda, \alpha) = U \mathfrak{sl}_2 / (h + 2\alpha + \Lambda, ef + (\alpha + \Lambda)(\alpha + 1)).$$
Definition

Define the \mathfrak{sl}_2-module for $\Lambda, \alpha \in \mathbb{C}$

$$R^{\mathfrak{sl}_2}(\Lambda, \alpha) = \mathcal{U}\mathfrak{sl}_2/(h + 2\alpha + \Lambda, ef + (\alpha + \Lambda)(\alpha + 1)).$$

When $\Lambda \in \mathbb{Z}_{\geq 2}, \alpha \in \mathbb{Z}$ and $1 - \Lambda \leq \alpha \leq -1$ this is a single isomorphism class denoted by $R^{\mathfrak{sl}_2}(\Lambda)$ (case (2, $-+$)). Its weight diagram is

$$\begin{array}{c}
\cdots \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \bullet \rightarrow \cdots \\
-\Lambda & -\Lambda + 2 & \Lambda - 2 & \Lambda \\
\end{array}$$
Relaxed Verma modules

The generalization of $R_{\mu_1, \mu_2, t}$ for arbitrary g is

Definition

Define the g-module for $\lambda \in P$, $\alpha \in \mathbb{C}$

$$R(\lambda, \alpha) = \mathcal{U} \mathfrak{g} \otimes_{\mathcal{U} p_i} \left(\mathbb{C}_\lambda \otimes_{\mathbb{C}} R^{sl_2}(\lambda(h_i), \alpha) \right).$$

Here p_i acts on $\mathbb{C}_\lambda \otimes_{\mathbb{C}} R^{sl_2}(\lambda(h_i), \alpha)$ via the projection

$$p_i \mapsto p_i/n_i = g_i = \{ h \in \mathfrak{h} \mid \alpha_i(h) = 0 \} \oplus g_i'.$$
Relaxed Verma modules

The generalization of $R_{\mu_1,\mu_2,t}$ for arbitrary g is

Definition

Define the g-module for $\lambda \in P$, $\alpha \in \mathbb{C}$

$$R(\lambda, \alpha) = \mathcal{U} g \otimes_{\mathcal{U} p_i} \left(\mathbb{C}_\lambda \otimes_{\mathbb{C}} R^{sl_2}(\lambda(h_i), \alpha) \right).$$

Here p_i acts on $\mathbb{C}_\lambda \otimes_{\mathbb{C}} R^{sl_2}(\lambda(h_i), \alpha)$ via the projection

$$p_i \mapsto p_i/n_i = g_i = \{ h \in \mathfrak{h} | \alpha_i(h) = 0 \} \oplus g'_i.$$

Put $R^{sl_2}(\lambda(h_i))$ to get the isomorphism class $R(\lambda)$.
The first observation one can make about this definition is that the underlying \(\mathfrak{h} \)-module of \(R(w \cdot \lambda, \alpha) \) coincides with the \(\mathfrak{h} \)-module \(H^0(X, \mathcal{R}_{*w}(\lambda, \alpha)) \) described earlier.
The first observation one can make about this definition is that the underlying \(\mathfrak{h} \)-module of \(R(w \cdot \lambda, \alpha) \) coincides with the \(\mathfrak{h} \)-module \(H^0(X, R_{\lambda-\alpha}(\lambda, \alpha)) \) described earlier.

In the rest of the presentation we will explain the cases in which we can prove that this induced module is indeed the (dual of the) \(\mathfrak{g} \)-module of global sections.
Let \(\mathcal{M} \) be a holonomic right \(\mathcal{D} \)-module on \(\overline{X_{s_i}} \cong \mathbb{P}^1 \) twisted by \(\mathcal{O}_{\mathbb{P}^1}(-\lambda(h_i)) \). Let \(i'_{s_i,l} : \overline{X_{s_i}} \hookrightarrow X_{l^{\leq s_i}} \) be the closed embedding. Then \(i'_{s_i,*}\mathcal{M} = (i'_{s_i,l,*}\mathcal{M})_{l \geq l_0} \in \text{Hol}(\lambda) \).
The case $w = s_i$

Let \mathcal{M} be a holonomic right \mathcal{D}-module on $\overline{X_{s_i}} \cong \mathbb{P}^1$ twisted by $\mathcal{O}_{\mathbb{P}^1}(-\lambda(h_i))$. Let $i'_{s_i, l} : \overline{X_{s_i}} \hookrightarrow X^{<s_i}$ be the closed embedding. Then $i'_{s_i*}\mathcal{M} = (i'_{s_i,l*}\mathcal{M})_{l \geq l_0} \in \text{Hol}(\lambda)$.

Theorem

\[\overline{\mathcal{H}}^j(X, i'_{s_i*}\mathcal{M}) \cong \mathcal{U}\mathfrak{g} \otimes_{\mathcal{U}\mathfrak{p}_i} \mathcal{H}^j(\mathbb{P}^1, \mathcal{M}) \text{ as } \mathfrak{g}\text{-module} \]
The case $w = s_i$

Let \mathcal{M} be a holonomic right \mathcal{D}-module on $\overline{X_{s_i}} \cong \mathbb{P}^1$ twisted by $\mathcal{O}_{\mathbb{P}^1}(-\lambda(h_i))$. Let $i'_{s_i,l} : \overline{X_{s_i}} \hookrightarrow X_{\leq s_i}$ be the closed embedding. Then $i'_{s_i*}\mathcal{M} = (i'_{s_i,l*}\mathcal{M})_{l \geq l_0} \in \text{Hol}(\lambda)$.

Theorem

\[\overline{H^j}(X, i'_{s_i*}\mathcal{M}) \cong \mathcal{U}_g \otimes \mathcal{U}_{\mathbb{P}_1} H^j(\mathbb{P}^1, \mathcal{M}) \text{ as } \mathfrak{g}\text{-module} \]

Together with the description of the cohomology of twisted \mathcal{D}-modules obtained as direct images from $X_{s_i} \cap s_i X_{s_i} \cong \mathbb{C}^\times \hookrightarrow \mathbb{P}^1$ (arXiv:1509.05299 [math.RT])

The case $w = s_i$

Let \mathcal{M} be a holonomic right \mathcal{D}-module on $\bar{X}_{s_i} \cong \mathbb{P}^1$ twisted by $\mathcal{O}_{\mathbb{P}^1}(-\lambda(h_i))$. Let $i_{s_i,l}': \bar{X}_{s_i} \hookrightarrow X_{l \leq s_i}$ be the closed embedding. Then $i_{s_i,l}^* \mathcal{M} = (i_{s_i,l}^* \mathcal{M})_{l \geq l_0} \in \text{Hol}(\lambda)$.

Theorem

\[
\overline{H}^j(X, i_{s_i,*}^* \mathcal{M}) \cong \mathcal{U} \mathfrak{g} \otimes \mathcal{U}_{\mathfrak{p}_i} H^j(\mathbb{P}^1, \mathcal{M}) \text{ as } \mathfrak{g}\text{-module}
\]

Together with the description of the cohomology of twisted \mathcal{D}-modules obtained as direct images from $X_{s_i} \cap s_i X_{s_i} \cong \mathbb{C}^\times \hookrightarrow \mathbb{P}^1$ (arXiv:1509.05299 [math.RT]) this gives a description of the \mathfrak{g}-modules $\overline{H}^j(X, \mathcal{R}_{s_i} \lambda, \alpha)$ for $j \in \{0, 1\}$ and all values of $?, \lambda, \alpha$ in terms of the above $\mathcal{R}(\lambda, \alpha)$ and obvious modifications thereof.
The automorphism $s := \tilde{s}_i = e^{e_i} e^{-f_i} e^{e_i}$ of X descends to affine morphisms $s_i^{l+\Delta} : X_{l+\Delta}^{\leq w} \to X_{l}^{\leq w}$ for w such that $s_i w < w$ and $\Delta \geq 4$.
The automorphism \(s := \tilde{s}_i = e^{e_i} e^{-f_i} e^{e_i} \) of \(X \) descends to affine morphisms \(s_{i}^l + \Delta : X_{i}^{l, w} \rightarrow X_{i}^{l, w} \) for \(w \) such that \(s_i w < w \) and \(\Delta \geq 4 \). The functor \(s_{i}^l + \Delta \) is an exact equivalence

\[
\text{Hol} \left(D_{X_{i}^{l, w}}^{\mathcal{O}_{X_{i}^{l, w}}(\lambda)} , X_{w} \right) \rightarrow \text{Hol} \left(D_{X_{i}^{l, w}}^{\mathcal{O}_{X_{i}^{l, w}}(\lambda)} , X_{w} \right).
\]
The automorphism \(s := \tilde{s}_i = e^{e_i} e^{-f_i} e^{e_i} \) of \(X \) descends to affine morphisms \(s_i^{l+\Delta} : \underline{X}_{i+\Delta}^{\leq w} \to \underline{X}_i^{\leq w} \) for \(w \) such that \(s_i w < w \) and \(\Delta \geq 4 \). The functor \(s_i^{l+\Delta} \) is an exact equivalence

\[
\text{Hol} \left(\mathcal{D}_{\underline{X}_i^{\leq w}}^{(s_i^{l+\Delta}) \ast \mathcal{O}_{\underline{X}_i^{\leq w}}(\lambda)}, \underline{X}_w \right) \to \text{Hol} \left(\mathcal{D}_{\underline{X}_i^{\leq w}}^{\mathcal{O}_{\underline{X}_i^{\leq w}}(\lambda)}, \underline{X}_w \right).
\]

Identifying \((s_i^{l+\Delta}) \ast \mathcal{O}_{\underline{X}_i^{\leq w}}(\lambda) = \mathcal{O}_{\underline{X}_{i+\Delta}^{\leq w}}(\lambda) \) we get an exact auto-equivalence of \(\text{Hol}(\lambda) \).
Exact auto-equivalence $\tilde{s}_i\ast$ of $\text{Hol}(\lambda)$

The automorphism $s := \tilde{s}_i = e^{e_i} e^{-f_i} e^{e_i}$ of X descends to affine morphisms $s_{i}^{l+\Delta} : X_{i}^{\leq w} \rightarrow X_{i}^{\leq w}$ for w such that $s_i w < w$ and $\Delta \geq 4$. The functor $s_{i}^{l+\Delta}\ast$ is an exact equivalence

$$\text{Hol} \left(\mathcal{D}_{X_{i}^{\leq w}}^{(s_i^{l+\Delta})\ast \mathcal{O}_{X_{i}^{\leq w}}(\lambda)} , \overline{X_{w}} \right) \rightarrow \text{Hol} \left(\mathcal{D}_{X_{i}^{\leq w}}^{\mathcal{O}_{X_{i}^{\leq w}}(\lambda)} , \overline{X_{w}} \right).$$

Identifying $(s_{i}^{l+\Delta})\ast \mathcal{O}_{X_{i}^{\leq w}}(\lambda) = \mathcal{O}_{X_{i+\Delta}^{\leq w}}(\lambda)$ we get an exact auto-equivalence of $\text{Hol}(\lambda)$.

Theorem

Let $\mathcal{M} \in \text{Hol}(\lambda)$. Then $\text{H}^j(X, \tilde{s}_i\ast \mathcal{M}) \cong \text{H}^j(X, \mathcal{M})^{\tilde{s}_i}$, where $(\cdot)^{\tilde{s}_i}$ is the twist of the \mathfrak{g}-module by the automorphism $\tilde{s}_i = e^{e_i} e^{-f_i} e^{e_i}$ of \mathfrak{g}.
The case of $\mathcal{R}_w(\lambda)$

Let us abbreviate the isomorphism class $\mathcal{R}_w(\lambda) = \mathcal{R}_w(\lambda, \alpha)$ when $\alpha \in \mathbb{Z}$ (trivial monodromy).
The case of $\mathcal{R}_{*w}(\lambda)$

Let us abbreviate the isomorphism class $\mathcal{R}_{*w}(\lambda) = \mathcal{R}_{*w}(\lambda, \alpha)$ when $\alpha \in \mathbb{Z}$ (trivial monodromy).

Theorem

Let $\lambda + \rho$ be regular antidominant. Then

$$\overline{H^0(X, \mathcal{R}_{*w}(\lambda))} \cong R(w \cdot \lambda)^\vee$$

as \mathfrak{g}-module.
Sketch of proof

Lemma

We have an isomorphism of g_i-modules

\[
\bigoplus_{\mu \in \mathbb{Z} \alpha_i + w \cdot \lambda} H^0(X, \mathcal{R} \ast w(\lambda))_{\mu}^\vee \cong \mathbb{C}_{w \cdot \lambda} \otimes \mathbb{R}^{s_{12}}((w \cdot \lambda)(h_i))
\]
Lemma

We have an isomorphism of \mathfrak{g}_i-modules

$$\bigoplus_{\mu \in \mathbb{Z} \alpha_i + w \cdot \lambda} \overline{H^0(X, \mathcal{R}_{w\cdot R}(\lambda))}_{\mu} \cong \mathbb{C}_{w\cdot \lambda} \otimes R^{s_{l_2}}((w \cdot \lambda)(h_i))$$

Thus we have an induced morphism

$\phi : R(w \cdot \lambda) \to \overline{H^0(X, \mathcal{R}_{w\cdot R}(\lambda))}^\vee$ of \mathfrak{g}-modules. Source and target coincide as \mathfrak{h}-modules. In order to prove that ϕ is an isomorphism it suffices to prove that it injects.
We have a short exact sequence

$$0 \to \tilde{s}_i^* B_w(\lambda) \to R_{*w}(\lambda) \to B_{s_iw}(\lambda) \to 0$$

in Hol(\lambda). Here $B_w(\lambda)$ is the $*$-direct image from the Schubert cell X_w.
We have a short exact sequence

\[0 \to \tilde{s}_i^* B_w(\lambda) \to R_{*w}(\lambda) \to B_{s_iw}(\lambda) \to 0 \]

in Hol(\lambda). Here \(B_w(\lambda) \) is the \(*\)-direct image from the Schubert cell \(X_w \).

We have \(\bar{H}^1(X, \tilde{s}_i^* B_w(\lambda)) \cong \bar{H}^1(X, B_w(\lambda)) \tilde{s}_i = 0 \). We get a surjection \(\bar{H}^0(X, R_{*w}(\lambda)) \to \bar{H}^0(X, B_{s_iw}(\lambda)) \) and hence an injection

\[\psi : \bar{H}^0(X, B_{s_iw}(\lambda))^\vee \hookrightarrow \bar{H}^0(X, R_{*w}(\lambda))^\vee. \]
We have a short exact sequence

\[0 \to \tilde{s}_i^*\mathcal{B}_w(\lambda) \to \mathcal{R}_{*w}(\lambda) \to \mathcal{B}_{s_iw}(\lambda) \to 0 \]

in $\text{Hol}(\lambda)$. Here $\mathcal{B}_w(\lambda)$ is the \ast-direct image from the Schubert cell X_w.

We have $\overline{H}^1(\text{X}, \tilde{s}_i^*\mathcal{B}_w(\lambda)) \cong \overline{H}^1(\text{X}, \mathcal{B}_w(\lambda))\tilde{s}_i = 0$. We get a surjection $\overline{H}^0(\text{X}, \mathcal{R}_{*w}(\lambda)) \to \overline{H}^0(\text{X}, \mathcal{B}_{s_iw}(\lambda))$ and hence an injection

\[\psi : \overline{H}^0(\text{X}, \mathcal{B}_{s_iw}(\lambda))^\vee \leftarrow \overline{H}^0(\text{X}, \mathcal{R}_{*w}(\lambda))^\vee. \]

By Kashiwara-Tanisaki ’95 $\overline{H}^0(\text{X}, \mathcal{B}_{s_iw}(\lambda))^\vee \cong M(s_iw \cdot \lambda)$.
We have a short exact sequence

\[0 \to \tilde{s}_i^*B_w(\lambda) \to R_{\ast w}(\lambda) \to B_{s_iw}(\lambda) \to 0 \]

in Hol(\lambda). Here \(B_w(\lambda) \) is the \(\ast \)-direct image from the Schubert cell \(X_w \).

We have \(\overline{H}^1(X, \tilde{s}_i^*B_w(\lambda)) \cong \overline{H}^1(X, B_w(\lambda))\tilde{s}_i = 0 \). We get a surjection \(\overline{H}^0(X, R_{\ast w}(\lambda)) \to \overline{H}^0(X, B_{s_iw}(\lambda)) \) and hence an injection

\[\psi : \overline{H}^0(X, B_{s_iw}(\lambda))^\vee \hookrightarrow \overline{H}^0(X, R_{\ast w}(\lambda))^\vee. \]

By Kashiwara-Tanisaki '95 \(\overline{H}^0(X, B_{s_iw}(\lambda))^\vee \cong M(s_iw \cdot \lambda) \).

Similarly, we get an injection \(\psi\tilde{s}_i : M(s_iw \cdot \lambda)\tilde{s}_i \hookrightarrow \overline{H}^0(X, R_{\ast w}(\lambda))^\vee. \)
Lemma

$R(w \cdot \lambda)$ does not have nonzero g'_i-finite vectors.

This lemma implies

Proposition

Any nonzero submodule of $R(w \cdot \lambda)$ intersects the submodule $M(s_i w \cdot \lambda) \oplus M(s_i w \cdot \lambda)$ nontrivially.

Apply the proposition to $\ker \phi$. Note that $\phi|_{M(s_i w \cdot \lambda)}$ is a nonzero multiple of ψ and similarly for ψ to conclude $\ker \phi = 0$.
Lemma

\(R(w \cdot \lambda) \) does not have nonzero \(g_i' \)-finite vectors.

This lemma implies

Proposition

Any nonzero submodule of \(R(w \cdot \lambda) \) intersects the submodule \(M(s_i w \cdot \lambda) \oplus M(s_i w \cdot \lambda)^{\sim_i} \) nontrivially.
Lemma

\(R(w \cdot \lambda) \) does not have nonzero \(g'_i \)-finite vectors.

This lemma implies

Proposition

Any nonzero submodule of \(R(w \cdot \lambda) \) intersects the submodule \(M(s_i w \cdot \lambda) \oplus M(s_i w \cdot \lambda) \tilde{s}_i \) nontrivially.

Apply the proposition to \(\ker \phi \). Note that \(\phi | M(s_i w \cdot \lambda) \) is a nonzero multiple of \(\psi \) and similarly for \(\psi \tilde{s}_i \) to conclude \(\ker \phi = 0 \).