Relaxed Highest Weight Modules from \mathcal{D} -Modules on the Kashiwara Flag Scheme

Claude Eicher, ETH Zurich

November 29, 2016

Relaxed highest weight modules for $\widehat{\mathfrak{sl}_2}$ after Feigin, Semikhatov, Sirota, Tipunin

Introduction to localization on the affine flag variety

Setup

Overview of results

Relaxed highest weight modules for $\widehat{\mathfrak{sl}_2}$ after Feigin, Semikhatov, Sirota, Tipunin

We start with the Lie algebra $\mathfrak{sl}_2 = \mathbb{C} \ e \oplus \mathbb{C} \ h \oplus \mathbb{C} \ f$ and define $\widehat{\mathfrak{sl}_2} = \mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathbb{C}[z, z^{-1}] \oplus \mathbb{C} \ K$, where K is central and

$$[X \otimes z^m, Y \otimes z^n] = [X, Y] \otimes z^{m+n} + m\delta_{m+n,0} \operatorname{Tr}(XY) K .$$

This endows $\widehat{\mathfrak{sl}_2}$ with the structure of a Lie algebra.

We start with the Lie algebra $\mathfrak{sl}_2 = \mathbb{C} \ e \oplus \mathbb{C} \ h \oplus \mathbb{C} \ f$ and define $\widehat{\mathfrak{sl}_2} = \mathfrak{sl}_2 \otimes_{\mathbb{C}} \mathbb{C}[z, z^{-1}] \oplus \mathbb{C} \ K$, where K is central and

$$[X \otimes z^m, Y \otimes z^n] = [X, Y] \otimes z^{m+n} + m\delta_{m+n,0} \operatorname{Tr}(XY) K .$$

This endows $\widehat{\mathfrak{sl}_2}$ with the structure of a Lie algebra.

Up to the derivation element this defines the affine Kac-Moody algebra with Cartan matrix $\begin{pmatrix} 2 & -2 \\ -2 & 2 \end{pmatrix}$.

Definition (Semikhatov-Sirota '97)

Let $\mu_1, \mu_2 \in \mathbb{C}$ and $t \in \mathbb{C} \setminus \{0\}$. The relaxed Verma module $R_{\mu_1,\mu_2,t}$ is the $\widehat{\mathfrak{sl}_2}$ -module generated from a vector v that satisfies the annihilation conditions

$$(e \otimes z^n)v = (h \otimes z^n)v = (f \otimes z^n)v = 0$$
 $n \ge 1$

and the relations

$$(f \otimes 1)(e \otimes 1)v = -\mu_1\mu_2 v \quad (h \otimes 1)v = -(1 + \mu_1 + \mu_2)v$$

 $Kv = (t - 2)v$

by a free action of $e \otimes z^n$, $f \otimes z^n$, $h \otimes z^n$, $n \leq -1$.

Different μ_1, μ_2 can give rise to isomorphic $R_{\mu_1,\mu_2,t}$ and it is easy to write out the condition.

Different μ_1, μ_2 can give rise to isomorphic $R_{\mu_1,\mu_2,t}$ and it is easy to write out the condition.

To get a first impression about the structure of $R_{\mu_1,\mu_2,t}$ we can look at the $\mathfrak{sl}_2 \otimes \mathbb{C}$ 1-submodule generated by v. It is a weight module with weights $-(1 + \mu_1 + \mu_2) + 2\mathbb{Z}$, each of which has multiplicity one. We have $(f \otimes 1)(e \otimes 1)^{\mu_j+1}v = 0$ and $(e \otimes 1)(f \otimes 1)^{-\mu_j}v = 0$ if these expressions are actually **defined** and $\mu_j \neq 0$ in the second case.

 $\mu_1 \notin \mathbb{Z}, \ \mu_2 \notin \mathbb{Z}$

 $\mu_1 \in \mathbb{Z}_{<0}, \ \mu_2 \notin \mathbb{Z}$

 $\mu_1 \notin \mathbb{Z}, \ \mu_2 \notin \mathbb{Z} \text{ case } (0)$

 $\mu_1 \in \mathbb{Z}_{\geq 0}$, $\mu_2 \notin \mathbb{Z}$ case (1, +)

 $\mu_1 \in \mathbb{Z}_{<0}, \ \mu_2 \notin \mathbb{Z} \ \mathsf{case} \ (1,-)$

 $\mu_1 \in \mathbb{Z}_{<0}, \ \mu_2 \in \mathbb{Z}_{\geq 0}$

 $\mu_1 \in \mathbb{Z}_{\geq 0}, \ \mu_2 \in \mathbb{Z}_{\geq 0}, \ \mu_1 \geq \mu_2$

 $\mu_1 \in \mathbb{Z}_{<0}, \ \mu_2 \in \mathbb{Z}_{<0}, \ \mu_1 \leq \mu_2$

 $\mu_1 \in \mathbb{Z}_{<0}, \ \mu_2 \in \mathbb{Z}_{\geq 0} \ \mathsf{case} \ (2,-+)$

 $\mu_1 \in \mathbb{Z}_{\geq 0}$, $\mu_2 \in \mathbb{Z}_{\geq 0}$, $\mu_1 \geq \mu_2$ case (2, ++)

 $\mu_1 \in \mathbb{Z}_{<0}, \ \mu_2 \in \mathbb{Z}_{<0}, \ \mu_1 \le \mu_2 \ \mathsf{case} \ (2, --)$

Coming back to $R_{\mu_1,\mu_2,t}$, we note that $(e \otimes 1)(f \otimes 1)^{-\mu_1}v = 0$ implies that the submodule generated by $(f \otimes 1)^{-\mu_1}v$ is isomorphic to a **Verma module** of highest weight $\lambda = \mu_1 - \mu_2 - 1$. We will denote it by $M_{\lambda,t}$. Coming back to $R_{\mu_1,\mu_2,t}$, we note that $(e \otimes 1)(f \otimes 1)^{-\mu_1}v = 0$ implies that the submodule generated by $(f \otimes 1)^{-\mu_1}v$ is isomorphic to a **Verma module** of highest weight $\lambda = \mu_1 - \mu_2 - 1$. We will denote it by $M_{\lambda,t}$.

Let's formulate a similar statement for $(e \otimes 1)^{\mu_1 + 1} v$.

Consider the automorphism of $\widehat{\mathfrak{sl}_2}$ sending $K \mapsto K$ and

 $e\otimes z^n\mapsto e\otimes z^{n+ heta}$ $f\otimes z^n\mapsto f\otimes z^{n- heta}$ $h\otimes z^n\mapsto h\otimes z^n+ heta\delta_{n,0}K$.

Consider the automorphism of $\widehat{\mathfrak{sl}_2}$ sending $K \mapsto K$ and

 $e\otimes z^n\mapsto e\otimes z^{n+ heta}$ $f\otimes z^n\mapsto f\otimes z^{n- heta}$ $h\otimes z^n\mapsto h\otimes z^n+ heta\delta_{n,0}K$.

The vector $w = (e \otimes 1)^{\mu_1 + 1} v$ satisfies

$$(e \otimes z^{\geq 1})w = (h \otimes z^{\geq 1})w = (f \otimes z^{\geq 0})w = 0$$

 $(h \otimes 1 + (t-2))w = (t + \mu_1 - \mu_2 - 1)w$.

Consider the automorphism of $\widehat{\mathfrak{sl}_2}$ sending $K \mapsto K$ and

 $e\otimes z^n\mapsto e\otimes z^{n+ heta}$ $f\otimes z^n\mapsto f\otimes z^{n- heta}$ $h\otimes z^n\mapsto h\otimes z^n+ heta\delta_{n,0}K$.

The vector $w = (e \otimes 1)^{\mu_1 + 1} v$ satisfies

$$(e \otimes z^{\geq 1})w = (h \otimes z^{\geq 1})w = (f \otimes z^{\geq 0})w = 0$$

 $(h \otimes 1 + (t-2))w = (t + \mu_1 - \mu_2 - 1)w$.

Thus *w* generates a submodule of $R_{\mu_1,\mu_2,t}$ which is isomorphic to a **Verma module twisted by the automorphism for** $\theta = 1$. We will denote it by $M_{t+\mu_1-\mu_2-1,t}^{(1)}$.

So we have the following embeddings

$$(1,+) \qquad R_{\mu_{1},\mu_{2},t} \leftrightarrow M_{t+\mu_{1}-\mu_{2}-1,t}^{(1)}$$

$$(1,-) \qquad M_{\mu_{1}-\mu_{2}-1,t} \hookrightarrow R_{\mu_{1},\mu_{2},t}$$

$$(2,-+) \qquad M_{\mu_{1}-\mu_{2}-1,t} \hookrightarrow R_{\mu_{1},\mu_{2},t} \leftrightarrow M_{t+\mu_{2}-\mu_{1}-1,t}^{(1)}$$

$$(2,++) \qquad R_{\mu_{1},\mu_{2},t} \leftrightarrow M_{t+\mu_{2}-\mu_{1}-1,t}^{(1)} \leftrightarrow M_{t+\mu_{1}-\mu_{2}-1,t}^{(1)}$$

$$(2,--) \qquad M_{\mu_{1}-\mu_{2}-1,t} \hookrightarrow M_{\mu_{2}-\mu_{1}-1,t} \hookrightarrow R_{\mu_{1},\mu_{2},t}$$

So we have the following embeddings

$$(1,+) \qquad R_{\mu_{1},\mu_{2},t} \leftrightarrow M_{t+\mu_{1}-\mu_{2}-1,t}^{(1)}$$

$$(1,-) \qquad M_{\mu_{1}-\mu_{2}-1,t} \hookrightarrow R_{\mu_{1},\mu_{2},t}$$

$$(2,-+) \qquad M_{\mu_{1}-\mu_{2}-1,t} \hookrightarrow R_{\mu_{1},\mu_{2},t} \leftrightarrow M_{t+\mu_{2}-\mu_{1}-1,t}^{(1)}$$

$$(2,++) \qquad R_{\mu_{1},\mu_{2},t} \leftrightarrow M_{t+\mu_{2}-\mu_{1}-1,t}^{(1)} \leftrightarrow M_{t+\mu_{1}-\mu_{2}-1,t}^{(1)}$$

$$(2,--) \qquad M_{\mu_{1}-\mu_{2}-1,t} \hookrightarrow M_{\mu_{2}-\mu_{1}-1,t} \hookrightarrow R_{\mu_{1},\mu_{2},t}$$

The **goal** of Semikhatov-Sirota '97 is to describe which modules $M_{\lambda,t}$, $M_{\lambda,t}^{(1)}$ or $R_{\mu'_1,\mu'_2,t}$ embed into $R_{\mu_1,\mu_2,t}$.

From the above we conclude that $\mu_1 \notin \mathbb{Z}$ and $\mu_2 \notin \mathbb{Z}$ is a necessary condition for $R_{\mu_1,\mu_2,t}$ to be simple.

From the above we conclude that $\mu_1 \notin \mathbb{Z}$ and $\mu_2 \notin \mathbb{Z}$ is a necessary condition for $R_{\mu_1,\mu_2,t}$ to be simple.

Theorem (Semikhatov-Sirota '97)

 $\begin{array}{ll} R_{\mu_1,\mu_2,t} & \textit{simple} & \Leftrightarrow & \mu_1 \notin \mathbb{Z} \ \textit{and} \ \mu_2 \notin \mathbb{Z} \\ \textit{and} \ \nexists r, s \in \mathbb{Z}_{>0} \ \mu_1 - \mu_2 = r - st \ \textit{or} \ \mu_2 - \mu_1 = r - st \end{array}$

The description of the so-called embedding diagrams for $R_{\mu_1,\mu_2,t}$ is the main result of Semikhatov-Sirota '97. These diagrams are labeled by combining

I, II, III $_\pm$ determined by the row

(0), (1, +), (1, -), (2, --), ... determined by the column.

	$\mu_1, \mu_2 \notin \mathbb{Z}$	$\mu_1 \in \mathbb{Z}, \mu_2 \notin \mathbb{Z}$	$\mu_1,\mu_2\in\mathbb{Z}$	
			$\mu_1\cdot\mu_2>0$	$\mu_1\cdot\mu_2<0$
$\mu_1 - \mu_2 \notin \mathbb{K}(t),$	I(0), Eq. (3.2)	I(1), Eq. (3.2)	I(2,) and $I(2, ++)$, Eq. (3.3)	I(2, -+), Eq. (3.3)
$\mu_1 - \mu_2 \in \mathbb{K}(t), \ t \notin \mathbb{Q}$	II(0), Eq. (3.4)	II(1), Eq. (3.4)	_	_
$ \begin{array}{c} \mu_1 - \mu_2 \in \mathbb{K}(t), \\ t \in \mathbb{Q}, \\ \mu_1 - \mu_2 \notin \mathbb{Z}, \\ (\mu_1 - \mu_2)/t \notin \mathbb{Z} \end{array} $	$\text{III}_{\pm}(0)$, Eq. (3.7)	$III_{\pm}(1)$, Eq. (3.9) and (3.10)		_
$ \begin{array}{l} \mu_1 - \mu_2 \in \mathbb{K}(t), \\ t \in \mathbb{Q}, \\ \mu_1 - \mu_2 \in \mathbb{Z}, \\ (\mu_1 - \mu_2)/t \notin \mathbb{Z} \end{array} $	$III_{\pm}^{0}(0),$	_	$\begin{array}{l} \mathrm{III}_{\pm}^{0}(2,),\\ \mathrm{Eq.} \ (3.13),\\ \mathrm{and} \ \mathrm{III}_{\pm}^{0}(2,++) \end{array}$	$\begin{array}{l} { m III}^0_{\pm}(2,-+), \\ { m Eq.} \ (3.32) \end{array}$
$egin{aligned} &\mu_1-\mu_2\in\mathbb{K}(t),\ &t\in\mathbb{Q},\ &\mu_1-\mu_2 otin\mathbb{Z},\ &(\mu_1-\mu_2)/t\in\mathbb{Z} \end{aligned}$	Eq. (3.11)	$\begin{array}{l} \text{III}_{\pm}^{0}(1),\\ \text{Eq.} (3.12) \end{array}$	_	_
$ \begin{array}{l} \mu_1 - \mu_2 \in \mathbb{K}(t), \\ t \in \mathbb{Q}, \\ \mu_1 - \mu_2 \in \mathbb{Z}, \\ (\mu_1 - \mu_2)/t \in \mathbb{Z} \end{array} $	$\operatorname{III}^{00}_{\pm}(0)$		$\begin{array}{l} \mathrm{III}_{\pm}^{00}(2,),\\ \mathrm{Eq.} \ (3.35),\\ \mathrm{and} \ \mathrm{III}_{\pm}^{00}(2,++) \end{array}$	$ III_{\pm}^{00}(2,-+), \\ Eq. (3.40) $

Example: case $III^0_+(2,-+)$

Introduction to localization on the affine flag variety

Let $\hat{\mathfrak{g}}$ be a finite dimensional semisimple Lie algebra over \mathbb{C} . The celebrated theorem of Beilinson-Bernstein '81 states that the functor of global sections is an exact equivalence of categories between the \mathcal{D} -modules on the flag variety twisted by the line bundle associated to a regular dominant weight and the $\hat{\mathfrak{g}}$ -modules of the corresponding central character.

Let $\hat{\mathfrak{g}}$ be a finite dimensional semisimple Lie algebra over \mathbb{C} . The celebrated theorem of Beilinson-Bernstein '81 states that the functor of global sections is an exact equivalence of categories between the \mathcal{D} -modules on the flag variety twisted by the line bundle associated to a regular dominant weight and the $\hat{\mathfrak{g}}$ -modules of the corresponding central character.

At present the full analogue of this statement in the case of affine Kac-Moody algebras is not known. Postponing definitions, let us start by pointing out related theorems in the case of affine Kac-Moody algebras g.

Let $\hat{\mathfrak{g}}$ be a finite dimensional semisimple Lie algebra over \mathbb{C} . The celebrated theorem of Beilinson-Bernstein '81 states that the functor of global sections is an exact equivalence of categories between the \mathcal{D} -modules on the flag variety twisted by the line bundle associated to a regular dominant weight and the $\hat{\mathfrak{g}}$ -modules of the corresponding central character.

At present the full analogue of this statement in the case of affine Kac-Moody algebras is not known. Postponing definitions, let us start by pointing out related theorems in the case of affine Kac-Moody algebras g.

In particular, we need to associate a "flag variety" to ${\mathfrak g}.$

A first possibility, in case g is untwisted, is to consider the thin flag variety defined as a quotient of the loop group by the lwahori group scheme $X^{\text{thin}} = L \overset{\circ}{G} / L^+ I$ (Beilinson-Drinfeld, Pappas-Rapoport '08 and others). Here $\overset{\circ}{G}$ is a semisimple algebraic group.

A first possibility, in case g is untwisted, is to consider the thin flag variety defined as a quotient of the loop group by the lwahori group scheme $X^{\text{thin}} = L \overset{\circ}{G} / L^+ I$ (Beilinson-Drinfeld, Pappas-Rapoport '08 and others). Here $\overset{\circ}{G}$ is a semisimple algebraic group.

Beilinson-Drinfeld define a category of twisted right \mathcal{D} -modules on X^{thin} and a functor of global sections $\Gamma(X^{\text{thin}}, \cdot)$ landing in \mathfrak{g} mod.

A first possibility, in case g is untwisted, is to consider the thin flag variety defined as a quotient of the loop group by the lwahori group scheme $X^{\text{thin}} = L \overset{\circ}{G} / L^+ I$ (Beilinson-Drinfeld, Pappas-Rapoport '08 and others). Here $\overset{\circ}{G}$ is a semisimple algebraic group.

Beilinson-Drinfeld define a category of twisted right \mathcal{D} -modules on X^{thin} and a functor of global sections $\Gamma(X^{\text{thin}}, \cdot)$ landing in \mathfrak{g} mod.

Theorem (Beilinson-Drinfeld, P. Shan '11)

Let $\lambda + \rho$ be regular antidominant. The functor $\Gamma(X^{\text{thin}}, \cdot)$ between the λ -twisted right \mathcal{D} -modules on X^{thin} and $\mathfrak{g} \mod \mathfrak{s}$ exact and faithful.

A first possibility, in case g is untwisted, is to consider the thin flag variety defined as a quotient of the loop group by the lwahori group scheme $X^{\text{thin}} = L \overset{\circ}{G} / L^+ I$ (Beilinson-Drinfeld, Pappas-Rapoport '08 and others). Here $\overset{\circ}{G}$ is a semisimple algebraic group.

Beilinson-Drinfeld define a category of twisted right \mathcal{D} -modules on X^{thin} and a functor of global sections $\Gamma(X^{\text{thin}}, \cdot)$ landing in \mathfrak{g} mod.

Theorem (Beilinson-Drinfeld, P. Shan '11)

Let $\lambda + \rho$ be regular antidominant. The functor $\Gamma(X^{\text{thin}}, \cdot)$ between the λ -twisted right \mathcal{D} -modules on X^{thin} and $\mathfrak{g} \mod \mathfrak{i}\mathfrak{s}$ exact and faithful.

The basic open question is to describe the essential image of this functor in $\mathfrak{g} \mod (\text{conjectural description by Beilinson '02, I. Shapiro '09).}$

A second possibility is to consider the Kashiwara flag scheme X. As we will detail later, it is a scheme, not locally of finite type, but having an open cover by affine spaces of countable dimension. The finite dimensional Schubert cells X_w can be defined as subschemes of X and one again has a notion of twisted D-modules on X and a functor of global sections. A second possibility is to consider the Kashiwara flag scheme X. As we will detail later, it is a scheme, not locally of finite type, but having an open cover by affine spaces of countable dimension. The finite dimensional Schubert cells X_w can be defined as subschemes of X and one again has a notion of twisted D-modules on X and a functor of global sections.

Recall the notion of the Verma module

 $\mathsf{M}(\mu) = \mathcal{U}\mathfrak{g} \otimes_{\mathcal{U}\mathfrak{b}} \mathbb{C}_{\mu}$

of highest weight $\mu \in \mathfrak{h}^*$.

A second possibility is to consider the Kashiwara flag scheme X. As we will detail later, it is a scheme, not locally of finite type, but having an open cover by affine spaces of countable dimension. The finite dimensional Schubert cells X_w can be defined as subschemes of X and one again has a notion of twisted \mathcal{D} -modules on X and a functor of global sections.

Recall the notion of the Verma module

 $\mathsf{M}(\mu) = \mathcal{U}\mathfrak{g} \otimes_{\mathcal{U}\mathfrak{b}} \mathbb{C}_{\mu}$

of highest weight $\mu \in \mathfrak{h}^*$.

Theorem (Kashiwara-Tanisaki '95)

The global sections of the *- and !-direct image from X_w identify with $M(w \cdot \lambda)^{\vee}$ and $M(w \cdot \lambda)$ respectively when $\lambda + \rho$ is regular antidominant. The last two theorems can be combined into

Theorem (Frenkel-Gaitsgory '09)

Let $\lambda + \rho$ be regular antidominant. $\Gamma(X^{\text{thin}}, \cdot)$ defines an exact equivalence between the category of λ -twisted right \mathcal{D} -modules on X^{thin} that are equivariant for the pro-unipotent radical of L⁺ I and the block of category \mathcal{O} of \mathfrak{g} defined by λ .

Setup
• $(\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})$ affine Kac-Moody data

- $(\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})$ affine Kac-Moody data
- g affine Kac-Moody (Lie) algebra

- $(\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})$ affine Kac-Moody data
- g affine Kac-Moody (Lie) algebra
- g = n⁻ ⊕ h ⊕ n triangular decomposition into positive and negative part n and n⁻ and the Cartan subalgebra h

- $(\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})$ affine Kac-Moody data
- g affine Kac-Moody (Lie) algebra
- g = n⁻ ⊕ h ⊕ n triangular decomposition into positive and negative part n and n⁻ and the Cartan subalgebra h
- + $\mathfrak{b}^{(-)} = \mathfrak{n}^{(-)} \oplus \mathfrak{h}$ Borel and opposite Borel subalgebra

- $(\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})$ affine Kac-Moody data
- g affine Kac-Moody (Lie) algebra
- g = n[−] ⊕ h ⊕ n triangular decomposition into positive and negative part n and n[−] and the Cartan subalgebra h
- + $\mathfrak{b}^{(-)} = \mathfrak{n}^{(-)} \oplus \mathfrak{h}$ Borel and opposite Borel subalgebra
- $e_i \in \mathfrak{n}, f_i \in \mathfrak{n}^-$ simple generators, $i \in I$

- $(\mathfrak{h}, (\alpha_i)_{i \in I} \subseteq \mathfrak{h}^*, (h_i)_{i \in I} \subseteq \mathfrak{h})$ affine Kac-Moody data
- \mathfrak{g} affine Kac-Moody (Lie) algebra
- g = n[−] ⊕ h ⊕ n triangular decomposition into positive and negative part n and n[−] and the Cartan subalgebra h
- + $\mathfrak{b}^{(-)} = \mathfrak{n}^{(-)} \oplus \mathfrak{h}$ Borel and opposite Borel subalgebra
- $e_i \in \mathfrak{n}, f_i \in \mathfrak{n}^-$ simple generators, $i \in I$
- $\Phi = \Phi^{>0} \sqcup \Phi^{<0}$ positive and negative roots of \mathfrak{g}

•
$$\mathfrak{g}_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i, i \in I$$

•
$$\mathfrak{g}_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i, i \in I$$

• $\mathfrak{p}_i^- = \mathbb{C} e_i \oplus \mathfrak{b}^-$ and $\mathfrak{n}_i \oplus \mathfrak{p}_i^- = \mathfrak{g}$, $i \in I$

•
$$\mathfrak{g}_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i, i \in I$$

- $\mathfrak{p}_i^- = \mathbb{C} e_i \oplus \mathfrak{b}^-$ and $\mathfrak{n}_i \oplus \mathfrak{p}_i^- = \mathfrak{g}$, $i \in I$
- $\mathfrak{p}_i = \mathbb{C} f_i \oplus \mathfrak{b}$ and $\mathfrak{n}_i^- \oplus \mathfrak{p}_i = \mathfrak{g}, i \in I$

•
$$\mathfrak{g}_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i, i \in I$$

- $\mathfrak{p}_i^- = \mathbb{C} e_i \oplus \mathfrak{b}^-$ and $\mathfrak{n}_i \oplus \mathfrak{p}_i^- = \mathfrak{g}, i \in I$
- $\mathfrak{p}_i = \mathbb{C} f_i \oplus \mathfrak{b}$ and $\mathfrak{n}_i^- \oplus \mathfrak{p}_i = \mathfrak{g}, i \in I$
- W Weyl group of g. It acts linearly on h^{*}. For i ∈ I there is a simple reflection s_i ∈ W.

•
$$\mathfrak{g}_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i, i \in I$$

- $\mathfrak{p}_i^- = \mathbb{C} e_i \oplus \mathfrak{b}^-$ and $\mathfrak{n}_i \oplus \mathfrak{p}_i^- = \mathfrak{g}, i \in I$
- $\mathfrak{p}_i = \mathbb{C} f_i \oplus \mathfrak{b}$ and $\mathfrak{n}_i^- \oplus \mathfrak{p}_i = \mathfrak{g}, i \in I$
- W Weyl group of g. It acts linearly on h^{*}. For i ∈ I there is a simple reflection s_i ∈ W.
- $\rho \in \mathfrak{h}^*$ such that $\rho(h_i) = 1$ for all $i \in I$

•
$$\mathfrak{g}_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i, i \in I$$

- $\mathfrak{p}_i^- = \mathbb{C} e_i \oplus \mathfrak{b}^-$ and $\mathfrak{n}_i \oplus \mathfrak{p}_i^- = \mathfrak{g}, i \in I$
- $\mathfrak{p}_i = \mathbb{C} f_i \oplus \mathfrak{b}$ and $\mathfrak{n}_i^- \oplus \mathfrak{p}_i = \mathfrak{g}, i \in I$
- W Weyl group of g. It acts linearly on h^{*}. For i ∈ I there is a simple reflection s_i ∈ W.
- $\rho \in \mathfrak{h}^*$ such that $\rho(h_i) = 1$ for all $i \in I$
- $w \cdot \lambda = w(\lambda + \rho) \rho$ dot-action of W on \mathfrak{h}^*

•
$$\mathfrak{g}_i = \mathbb{C} f_i \oplus \mathfrak{h} \oplus \mathbb{C} e_i, i \in I$$

- $\mathfrak{p}_i^- = \mathbb{C} e_i \oplus \mathfrak{b}^-$ and $\mathfrak{n}_i \oplus \mathfrak{p}_i^- = \mathfrak{g}, i \in I$
- $\mathfrak{p}_i = \mathbb{C} f_i \oplus \mathfrak{b}$ and $\mathfrak{n}_i^- \oplus \mathfrak{p}_i = \mathfrak{g}, i \in I$
- W Weyl group of g. It acts linearly on h^{*}. For i ∈ I there is a simple reflection s_i ∈ W.
- $\rho \in \mathfrak{h}^*$ such that $\rho(h_i) = 1$ for all $i \in I$
- $w \cdot \lambda = w(\lambda + \rho) \rho$ dot-action of W on \mathfrak{h}^*
- lattice $P \subseteq \mathfrak{h}^*$ such that $\alpha_i \in P$ and $P(h_i) \subseteq \mathbb{Z}$ for all $i \in I$

• Pro-unipotent group scheme $U = \varprojlim_l \exp(n/n_l)$

- Pro-unipotent group scheme $U = \varprojlim_{l} \exp(n/n_l)$
- Pro-unipotent group scheme U(Ψ) ⊆ U, where Ψ ⊆ Φ^{>0} satisfies (Ψ + Ψ) ∩ Φ^{>0} ⊆ Ψ, similarly U⁻(Ψ) ⊆ U⁻.

- Pro-unipotent group scheme $U = \varprojlim_{l \in \mathcal{I}} \exp(\mathfrak{n}/\mathfrak{n}_{l})$
- Pro-unipotent group scheme U(Ψ) ⊆ U, where Ψ ⊆ Φ^{>0} satisfies (Ψ + Ψ) ∩ Φ^{>0} ⊆ Ψ, similarly U⁻(Ψ) ⊆ U⁻.
- Pro-unipotent group scheme $U_I^- = U^-(\Phi_I^{<0})$, where $\Phi_I^{<0} \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq I$.

- Pro-unipotent group scheme $U = \varprojlim_{l} \exp(n/n_l)$
- Pro-unipotent group scheme U(Ψ) ⊆ U, where Ψ ⊆ Φ^{>0} satisfies (Ψ + Ψ) ∩ Φ^{>0} ⊆ Ψ, similarly U⁻(Ψ) ⊆ U⁻.
- Pro-unipotent group scheme $U_I^- = U^-(\Phi_I^{<0})$, where $\Phi_I^{<0} \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq I$.

•
$$T = \operatorname{Spec} \mathbb{C}[P] \cong \mathbb{G}_m^{\dim \mathfrak{h}}$$
 algebraic torus

- Pro-unipotent group scheme $U = \varprojlim_{l \in \mathcal{N}_l} \exp(\mathfrak{n}/\mathfrak{n}_l)$
- Pro-unipotent group scheme U(Ψ) ⊆ U, where Ψ ⊆ Φ^{>0} satisfies (Ψ + Ψ) ∩ Φ^{>0} ⊆ Ψ, similarly U⁻(Ψ) ⊆ U⁻.
- Pro-unipotent group scheme $U_I^- = U^-(\Phi_I^{<0})$, where $\Phi_I^{<0} \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq I$.
- $T = \operatorname{Spec} \mathbb{C}[P] \cong \mathbb{G}_m^{\dim \mathfrak{h}}$ algebraic torus
- $B^{(-)} = T \ltimes U^{(-)}$ Borel and opposite Borel group scheme

- Pro-unipotent group scheme $U = \varprojlim_l \exp(n/n_l)$
- Pro-unipotent group scheme U(Ψ) ⊆ U, where Ψ ⊆ Φ^{>0} satisfies (Ψ + Ψ) ∩ Φ^{>0} ⊆ Ψ, similarly U⁻(Ψ) ⊆ U⁻.
- Pro-unipotent group scheme $U_I^- = U^-(\Phi_I^{<0})$, where $\Phi_I^{<0} \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq I$.
- $T = \operatorname{Spec} \mathbb{C}[P] \cong \mathbb{G}_m^{\dim \mathfrak{h}}$ algebraic torus
- $B^{(-)} = T \ltimes U^{(-)}$ Borel and opposite Borel group scheme
- G_i reductive group determined by g_i and P

- Pro-unipotent group scheme $U = \varprojlim_{l \in \mathcal{N}_l} \exp(\mathfrak{n}/\mathfrak{n}_l)$
- Pro-unipotent group scheme U(Ψ) ⊆ U, where Ψ ⊆ Φ^{>0} satisfies (Ψ + Ψ) ∩ Φ^{>0} ⊆ Ψ, similarly U⁻(Ψ) ⊆ U⁻.
- Pro-unipotent group scheme $U_I^- = U^-(\Phi_I^{<0})$, where $\Phi_I^{<0} \subseteq \Phi^{<0}$ is the subset of negative roots of height $\geq I$.
- $T = \operatorname{Spec} \mathbb{C}[P] \cong \mathbb{G}_m^{\dim \mathfrak{h}}$ algebraic torus
- $B^{(-)} = T \ltimes U^{(-)}$ Borel and opposite Borel group scheme
- G_i reductive group determined by g_i and P
- $P_i = G_i \ltimes U(\Phi^{>0} \setminus \{\alpha_i\})$ and similarly P_i^-

Out of the affine Kac-Moody data and the lattice P Kashiwara '90 constructs a scheme G with a distinguished point $1 \in G$ and commuting left and right actions of P_i^- and P_i respectively, for all $i \in I$.

Out of the affine Kac-Moody data and the lattice P Kashiwara '90 constructs a scheme G with a distinguished point $1 \in G$ and commuting left and right actions of P_i^- and P_i respectively, for all $i \in I$.

The Kashiwara flag scheme is defined as X = G/B (quotient by a locally free action). The so-called Tits extension \widetilde{W} of W acts on G and X. On T-invariant subsets of X, the action of \widetilde{W} factors through W.

• $U^{-}1B \cong \mathbb{A}^{\infty}$ is an open subscheme of X called big cell.

- $U^{-}1B \cong \mathbb{A}^{\infty}$ is an open subscheme of X called big cell.
- $X = \bigcup_{w \in W} N(X_w)$, where $N(X_w) = wU^{-}1B$

- $U^{-}1B \cong \mathbb{A}^{\infty}$ is an open subscheme of X called big cell.
- $X = \bigcup_{w \in W} N(X_w)$, where $N(X_w) = wU^- 1B$
- $X = \bigcup_{w \in W} X^{\leq w}$, where $X^{\leq w} = \bigcup_{v \leq w} N(X_v)$ is B^- -invariant and quasi-compact and \leq is the Bruhat partial order

- $U^{-}1B \cong \mathbb{A}^{\infty}$ is an open subscheme of X called big cell.
- $X = \bigcup_{w \in W} N(X_w)$, where $N(X_w) = wU^{-}1B$
- $X = \bigcup_{w \in W} X^{\leq w}$, where $X^{\leq w} = \bigcup_{v \leq w} N(X_v)$ is B^- -invariant and quasi-compact and \leq is the Bruhat partial order
- There is a line bundle $\mathcal{O}_X(\lambda)$ on X associated to $\lambda \in P$.

For fixed w and all $l \in \mathbb{Z}_{>0}$ large enough U_l^- acts locally freely on $X^{\leq w}$. The quotient $X_l^{\leq w} = U_l^- \setminus X^{\leq w}$ is a smooth quasi-projective variety (Shan-Varagnolo-Vasserot '14).

For fixed w and all $l \in \mathbb{Z}_{>0}$ large enough U_l^- acts locally freely on $X^{\leq w}$. The quotient $X_l^{\leq w} = U_l^- \setminus X^{\leq w}$ is a smooth quasi-projective variety (Shan-Varagnolo-Vasserot '14).

We have for $l_1 \ge l_2$ large enough a commutative diagram

The fibers of the projection $p_{l_2}^{l_1}$ are affine spaces and \hookrightarrow are closed embeddings.

For fixed w and all $l \in \mathbb{Z}_{>0}$ large enough U_l^- acts locally freely on $X^{\leq w}$. The quotient $X_l^{\leq w} = U_l^- \setminus X^{\leq w}$ is a smooth quasi-projective variety (Shan-Varagnolo-Vasserot '14).

We have for $l_1 \geq l_2$ large enough a commutative diagram

The fibers of the projection $p_{l_2}^{l_1}$ are affine spaces and \hookrightarrow are closed embeddings. Subsequently we will always assume that I is large enough.

$$\begin{split} & \operatorname{Hol}(\mathcal{D}_{X_{l}^{\leq w}}(\lambda),\overline{X_{w}}) \text{ Category of holonomic right } \mathcal{D}\text{-modules on} \\ & X_{l}^{\leq w} \text{ twisted by } \mathcal{O}_{X_{l}^{\leq w}}(\lambda), \ \lambda \in P \text{, with support in } \overline{X_{w}} \end{split}$$

$$\begin{split} & \operatorname{Hol}(\mathcal{D}_{X_{l}^{\leq w}}(\lambda),\overline{X_{w}}) \text{ Category of holonomic right } \mathcal{D}\text{-modules on } \\ & X_{l}^{\leq w} \text{ twisted by } \mathcal{O}_{X_{l}^{\leq w}}(\lambda), \, \lambda \in P \text{, with support in } \overline{X_{w}} \end{split}$$

• It is an abelian category and every object has finite length.

$$\begin{split} & \operatorname{Hol}(\mathcal{D}_{X_{l}^{\leq w}}(\lambda),\overline{X_{w}}) \text{ Category of holonomic right } \mathcal{D}\text{-modules on } \\ & X_{l}^{\leq w} \text{ twisted by } \mathcal{O}_{X_{l}^{\leq w}}(\lambda), \, \lambda \in P \text{, with support in } \overline{X_{w}} \end{split}$$

- It is an abelian category and every object has finite length.
- It has a contravariant exact auto-equivalence D, the holonomic duality.

$$\begin{split} & \operatorname{Hol}(\mathcal{D}_{X_{l}^{\leq w}}(\lambda),\overline{X_{w}}) \text{ Category of holonomic right } \mathcal{D}\text{-modules on} \\ & X_{l}^{\leq w} \text{ twisted by } \mathcal{O}_{X_{l}^{\leq w}}(\lambda), \, \lambda \in P \text{, with support in } \overline{X_{w}} \end{split}$$

- It is an abelian category and every object has finite length.
- It has a contravariant exact auto-equivalence D, the holonomic duality.
- $p_{l_{2}*}^{l_{1}}$: Hol $(\mathcal{D}_{X_{l_{1}}^{\leq w}}(\lambda), \overline{X_{w}}) \rightarrow$ Hol $(\mathcal{D}_{X_{l_{2}}^{\leq w}}(\lambda), \overline{X_{w}})$ exact equivalence

$$\begin{aligned} & \operatorname{Hol}(\lambda, \overline{X_w}, X^{\leq w}, I_0) \ni \mathcal{M} = \left((\mathcal{M}_I)_{I \geq I_0}, (\gamma_{I_2}^{I_1})_{I_1 \geq I_2 \geq I_0} \right) \\ & \operatorname{Hol}(\mathcal{D}_{X_l^{\leq w}}(\lambda), \overline{X_w}) \ni \mathcal{M}_I \\ & \gamma_{I_2}^{I_1} : p_{I_2*}^{I_1} \mathcal{M}_{I_1} \xrightarrow{\cong} \mathcal{M}_{I_2} \quad \gamma_{I_3}^{I_1} = \gamma_{I_3}^{I_2} \circ p_{I_3*}^{I_2} \gamma_{I_2}^{I_1} , \ I_1 \geq I_2 \geq I_3 \geq I_0 \end{aligned}$$

$$\begin{aligned} & \operatorname{Hol}(\lambda, \overline{X_w}, X^{\leq w}, I_0) \ni \mathcal{M} = \left((\mathcal{M}_I)_{I \geq I_0}, (\gamma_{I_2}^{I_1})_{I_1 \geq I_2 \geq I_0} \right) \\ & \operatorname{Hol}(\mathcal{D}_{X_l^{\leq w}}(\lambda), \overline{X_w}) \ni \mathcal{M}_I \\ & \gamma_{I_2}^{I_1} : p_{I_2*}^{I_1} \mathcal{M}_{I_1} \xrightarrow{\cong} \mathcal{M}_{I_2} \quad \gamma_{I_3}^{I_1} = \gamma_{I_3}^{I_2} \circ p_{I_3*}^{I_2} \gamma_{I_2}^{I_1} , \ I_1 \geq I_2 \geq I_3 \geq I_0 \end{aligned}$$

For any $l \geq l_0$, $\mathcal{M} \mapsto \mathcal{M}_l$ is an exact equivalence.
$$\begin{aligned} & \operatorname{Hol}(\lambda, \overline{X_w}, X^{\leq w}, I_0) \ni \mathcal{M} = \left((\mathcal{M}_I)_{I \geq I_0}, (\gamma_{I_2}^{I_1})_{I_1 \geq I_2 \geq I_0} \right) \\ & \operatorname{Hol}(\mathcal{D}_{X_l^{\leq w}}(\lambda), \overline{X_w}) \ni \mathcal{M}_I \\ & \gamma_{I_2}^{I_1} : p_{I_2*}^{I_1} \mathcal{M}_{I_1} \xrightarrow{\cong} \mathcal{M}_{I_2} \quad \gamma_{I_3}^{I_1} = \gamma_{I_3}^{I_2} \circ p_{I_3*}^{I_2} \gamma_{I_2}^{I_1} , \ I_1 \geq I_2 \geq I_3 \geq I_0 \end{aligned}$$

For any $l \ge l_0$, $\mathcal{M} \mapsto \mathcal{M}_l$ is an exact equivalence.

Taking limits we get rid of the auxiliary choices $\overline{X_w}$, $X^{\leq w}$ and l_0 and define the category $Hol(\lambda)$ of λ -twisted holonomic right \mathcal{D} -modules on X.

Cohomology groups

For $\mathcal{M} \in \mathsf{Hol}(\lambda)$ and $j \in \mathbb{Z}_{\geq 0}$ define

$$\mathsf{H}^{j}(X,\mathcal{M}) = \varprojlim_{I} \mathsf{H}^{j}(X_{I}^{\leq w},\mathcal{M}_{I}) ,$$

where $H^{j}(X_{I}^{\leq w}, \mathcal{M}_{I})$ are the sheaf cohomology groups.

For $\mathcal{M} \in \mathsf{Hol}(\lambda)$ and $j \in \mathbb{Z}_{\geq 0}$ define

$$\mathsf{H}^{j}(X,\mathcal{M}) = \varprojlim_{I} \mathsf{H}^{j}(X_{I}^{\leq w},\mathcal{M}_{I}) ,$$

where $H^{j}(X_{l}^{\leq w}, \mathcal{M}_{l})$ are the sheaf cohomology groups. If $v \in \mathfrak{g}$ there is a $m \in \mathbb{Z}_{\geq 0}$ such that $[v, \mathfrak{n}_{l+m}^{-}] \subseteq \mathfrak{n}_{l}^{-}$ for all *l*. Then v defines a \mathbb{C} -linear map $H^{j}(X_{l+m}^{\leq w}, \mathcal{M}_{l+m}) \to H^{j}(X_{l}^{\leq w}, \mathcal{M}_{l})$.

For $\mathcal{M} \in \mathsf{Hol}(\lambda)$ and $j \in \mathbb{Z}_{\geq 0}$ define

$$\mathsf{H}^{j}(X,\mathcal{M}) = \varprojlim_{I} \mathsf{H}^{j}(X_{I}^{\leq w},\mathcal{M}_{I}) ,$$

where $H^{j}(X_{l}^{\leq w}, \mathcal{M}_{l})$ are the sheaf cohomology groups. If $v \in \mathfrak{g}$ there is a $m \in \mathbb{Z}_{\geq 0}$ such that $[v, \mathfrak{n}_{l+m}^{-}] \subseteq \mathfrak{n}_{l}^{-}$ for all l. Then v defines a \mathbb{C} -linear map $H^{j}(X_{l+m}^{\leq w}, \mathcal{M}_{l+m}) \to H^{j}(X_{l}^{\leq w}, \mathcal{M}_{l})$. In this way $H^{j}(X, \mathcal{M})$ becomes a \mathfrak{g} -module.

For $\mathcal{M} \in \mathsf{Hol}(\lambda)$ and $j \in \mathbb{Z}_{\geq 0}$ define

$$\mathsf{H}^{j}(X,\mathcal{M}) = \varprojlim_{I} \mathsf{H}^{j}(X_{I}^{\leq w},\mathcal{M}_{I}) ,$$

where $H^{j}(X_{l}^{\leq w}, \mathcal{M}_{l})$ are the sheaf cohomology groups. If $v \in \mathfrak{g}$ there is a $m \in \mathbb{Z}_{\geq 0}$ such that $[v, \mathfrak{n}_{l+m}^{-}] \subseteq \mathfrak{n}_{l}^{-}$ for all l. Then v defines a \mathbb{C} -linear map $H^{j}(X_{l+m}^{\leq w}, \mathcal{M}_{l+m}) \to H^{j}(X_{l}^{\leq w}, \mathcal{M}_{l})$. In this way $H^{j}(X, \mathcal{M})$ becomes a \mathfrak{g} -module.

Define

$$\overline{\mathsf{H}^{j}}(X,\mathcal{M}) = \bigoplus_{\mu \in \mathfrak{h}^{*}} \mathsf{H}^{j}(X,\mathcal{M})_{\mu} \; ,$$

where $(\cdot)_{\mu}$ denotes the generalized weight space associated to μ . This is a g-submodule of $H^{j}(X, \mathcal{M})$.

26

For $w \in W$ abbreviate

$$U_w^- = U^-(\Phi^{<0} \cap w\Phi^{<0}) \subseteq U^-$$

 $U_w = U(\Phi^{>0} \cap w\Phi^{<0}) \subseteq U$.

The map $(u_1, u_2) \mapsto u_1 u_2 w 1B$ defines a *T*-equivariant isomorphism of schemes

$$U_w^- \times U_w \xrightarrow{\cong} N(X_w)$$
.

The image of $1 \times U_w$ is the (finite dimensional) Schubert cell X_w in X.

Let w be such that $s_i w < w$.

Lemma

We have $X_w \cap s_i X_w = s_i X_w \setminus X_{s_iw} = X_w \setminus s_i X_{s_iw}$. In the above coordinates on $N(X_w)$ and $s_i N(X_w) = N(X_{s_iw})$ the identity map $s_i X_w \setminus X_{s_iw} \to X_w \setminus s_i X_{s_iw}$ is the isomorphism

$$(U^{-}(-\alpha_i) \setminus 1) \times U_{s_iw} \to (U(\alpha_i) \setminus 1) \times^{s_i} U_{s_iw}$$

 $(e^{zf_i}, h_i(z)^{-1}uh_i(z)) \mapsto (e^{z^{-1}e_i}, \dot{s_i}^{-1}\widetilde{u}(z)\dot{s_i}).$

Here $z \in \mathbb{G}_m$ and $\dot{s}_i = e^{e_i}e^{-f_i}e^{e_i}$. h_i is considered as a group homomorphism $\mathbb{G}_m \to T$. Given u and z, $\tilde{u}(z) \in U_{s_iw}$ is uniquely determined by the condition $e^{ze_i}u \in \tilde{u}(z)U(\Phi^{>0} \cap s_iw\Phi^{>0})$.

$$i_{w,I}: X_w \cap s_i X_w \hookrightarrow X_I^{\leq w}$$
.

$$i_{w,I}: X_w \cap s_i X_w \hookrightarrow X_I^{\leq w}$$
.

Definition

Define the right $\mathcal{D}_{X_l^{\leq w}}(\lambda)$ -module for $\lambda \in P$ and $\alpha \in \mathbb{C}$

$$\mathcal{R}_{?w}(\lambda,\alpha)_{I} = i_{w,I?}\left(\left(\Omega_{\mathbb{C}^{\times}}^{(\alpha)} \boxtimes \Omega_{s_{i}} \bigcup_{s_{i}^{w}}\right) \otimes i_{w,I}^{*} \mathcal{O}_{X_{I}^{\leq w}}(\lambda)\right) \quad ? \in \{*,!\}.$$

$$i_{w,I}: X_w \cap s_i X_w \hookrightarrow X_I^{\leq w}$$
.

Definition

Define the right $\mathcal{D}_{X_{l}^{\leq w}}(\lambda)$ -module for $\lambda \in P$ and $\alpha \in \mathbb{C}$

$$\mathcal{R}_{?w}(\lambda,\alpha)_{I} = i_{w,I?}\left(\left(\Omega_{\mathbb{C}^{\times}}^{(\alpha)} \boxtimes \Omega_{s_{i}} \bigcup_{s_{i}w}\right) \otimes i_{w,I}^{*} \mathcal{O}_{X_{I}^{\leq w}}(\lambda)\right) \quad ? \in \{*,!\}.$$

Here we introduced the right $\mathcal{D}_{\mathbb{C}^{\times}}$ -module $\Omega_{\mathbb{C}^{\times}}^{(\alpha)} = \mathcal{D}_{\mathbb{C}^{\times}}/(x\partial_x - \alpha)\mathcal{D}_{\mathbb{C}^{\times}}$. The coordinate x on \mathbb{C}^{\times} is the one of $U(\alpha_i)$. Thus $x = \infty$ corresponds to X_{s_iw} .

$$i_{w,l}: X_w \cap s_i X_w \hookrightarrow X_l^{\leq w}$$
.

Definition

Define the right $\mathcal{D}_{X_{l}^{\leq w}}(\lambda)$ -module for $\lambda \in P$ and $\alpha \in \mathbb{C}$

$$\mathcal{R}_{?w}(\lambda,\alpha)_{I} = i_{w,I?}\left(\left(\Omega_{\mathbb{C}^{\times}}^{(\alpha)} \boxtimes \Omega_{s_{i}} \bigcup_{s_{i}w}\right) \otimes i_{w,I}^{*} \mathcal{O}_{X_{I}^{\leq w}}(\lambda)\right) \quad ? \in \{*,!\}.$$

Here we introduced the right $\mathcal{D}_{\mathbb{C}^{\times}}$ -module $\Omega_{\mathbb{C}^{\times}}^{(\alpha)} = \mathcal{D}_{\mathbb{C}^{\times}}/(x\partial_x - \alpha)\mathcal{D}_{\mathbb{C}^{\times}}$. The coordinate x on \mathbb{C}^{\times} is the one of $U(\alpha_i)$. Thus $x = \infty$ corresponds to X_{s_iw} .

Then $\mathcal{R}_{?w}(\lambda, \alpha) = (\mathcal{R}_{?w}(\lambda, \alpha)_l)_{l \ge l_0} \in Hol(\lambda)$, where the $\gamma_{l_2}^{l_1}$ are induced.

Before describing the cohomology of these \mathcal{D} -modules, let us pause briefly and explain that $X_w \cap s_i X_w$ can be understood as orbits for the subgroup L⁺ $I \cap {}^{s_i} L^+ I$ of the Iwahori group L⁺ I acting on X^{thin} . Before describing the cohomology of these \mathcal{D} -modules, let us pause briefly and explain that $X_w \cap s_i X_w$ can be understood as orbits for the subgroup L⁺ $I \cap {}^{s_i} L^+ I$ of the Iwahori group L⁺ I acting on X^{thin} .

Indeed, for $s_i w > w$ the L⁺ *I*-orbit X_w is also a L⁺ *I* \cap^{s_i} L⁺ *I*-orbit, as is $s_i X_w$. For $s_i w < w$ the L⁺ *I*-orbit X_w splits into two L⁺ *I* \cap^{s_i} L⁺ *I*-orbits

$$X_w = (X_w \cap s_i X_w) \sqcup s_i X_{s_i w} .$$

The arrows indicate the closure relations.

Overview of results

We will start by discussing the h-module structure.

We will start by discussing the h-module structure.

We then introduce candidate g-modules.

We will start by discussing the \mathfrak{h} -module structure.

We then introduce candidate g-modules.

We identify these candidate \mathfrak{g} -modules with the (dual of the) \mathfrak{g} -module of global sections.

Theorem

We have isomorphisms of h-modules

1.
$$\mathrm{H}^{0}(X_{I}^{\leq w}, \mathcal{R}_{*w}(\lambda, \alpha)_{I}) \cong \mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} \mathrm{S}(\mathfrak{n}_{i}^{-}/\mathfrak{n}_{I}^{-}) \otimes_{\mathbb{C}} \mathbb{C}_{s_{i}w\cdot\lambda+\alpha\alpha_{i}}$$

2. $\overline{\mathrm{H}^{0}}(X, \mathcal{R}_{*w}(\lambda, \alpha)) \cong \mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} \mathrm{S} \mathfrak{n}_{i}^{-} \otimes_{\mathbb{C}} \mathbb{C}_{s_{i}w\cdot\lambda+\alpha\alpha_{i}}$

Here z has weight α_i .

Consider the following factorization of $i_{w,l}: X_w \cap s_i X_w \hookrightarrow X_l^{\leq w}$

$$X_w \cap s_i X_w \hookrightarrow X_w \hookrightarrow N(X_w)_l \cong (U_l^- \setminus U_w^-) \times U_w \hookrightarrow X_l^{\leq w}$$
.

Consider the following factorization of $i_{w,l}: X_w \cap s_i X_w \hookrightarrow X_l^{\leq w}$

$$X_w \cap s_i X_w \hookrightarrow X_w \hookrightarrow N(X_w)_I \cong (U_I^- \setminus U_w^-) \times U_w \hookrightarrow X_I^{\leq w}$$
.

The first and third embedding are open and affine, while the second embedding is closed.

Consider the following factorization of $i_{w,l}: X_w \cap s_i X_w \hookrightarrow X_l^{\leq w}$

$$X_w \cap s_i X_w \hookrightarrow X_w \hookrightarrow N(X_w)_l \cong (U_l^- \setminus U_w^-) \times U_w \hookrightarrow X_l^{\leq w}$$
.

The first and third embedding are open and affine, while the second embedding is closed.

By definition $H^0(X_I^{\leq w}, \mathcal{R}_{*w}(\lambda, \alpha)_I) \xrightarrow{\cong} H^0(N(X_w)_I, \mathcal{R}_{*w}(\lambda, \alpha)_I)$ and there is the explicit description of the *-direct image w.r.t. the second embedding $\kappa_{w,I} : X_w \hookrightarrow N(X_w)_I$

$$\kappa_{w,l*}\mathcal{M} = \kappa_{w,l}\mathcal{M} \otimes_{\mathbb{C}} \mathbb{C}[\partial_1, \ldots, \partial_r] ,$$

where \mathcal{M} is any right \mathcal{D} -module on X_w and $r = \dim U_l^- \setminus U_w^-$.

Lemma

$$\begin{array}{l} \displaystyle \overset{}{\mathrm{H}^{j}}(X_{I}^{\leq w},\mathcal{R}_{*w}(\lambda,\alpha)_{I})=0 \, \, and \, \, consequently \\ \displaystyle \overset{}{\mathrm{H}^{j}}(X,\mathcal{R}_{*w}(\lambda,\alpha))=0 \, \, for \, j>0. \end{array}$$

Lemma

 $\frac{\mathrm{H}^{j}(X_{I}^{\leq w}, \mathcal{R}_{*w}(\lambda, \alpha)_{I}) = 0 \text{ and consequently}}{\mathrm{H}^{j}(X, \mathcal{R}_{*w}(\lambda, \alpha)) = 0 \text{ for } j > 0.}$

This is again proven using the fact that $H^{j}(X_{I}^{\leq w}, \mathcal{R}_{*w}(\lambda, \alpha)_{I}) \xrightarrow{\cong} H^{j}(N(X_{w})_{I}, \mathcal{R}_{*w}(\lambda, \alpha)_{I})$ and the above explicit description of the *-direct image.

Definition

Define the \mathfrak{sl}_2 -module for $\Lambda, \alpha \in \mathbb{C}$

$$\mathsf{R}^{\mathfrak{sl}_2}(\Lambda, \alpha) = \mathcal{U} \mathfrak{sl}_2/(h + 2\alpha + \Lambda, ef + (\alpha + \Lambda)(\alpha + 1))$$
.

Definition

Define the \mathfrak{sl}_2 -module for $\Lambda, \alpha \in \mathbb{C}$

$$\mathsf{R}^{\mathfrak{sl}_2}(\Lambda, \alpha) = \mathcal{U} \mathfrak{sl}_2/(h + 2\alpha + \Lambda, ef + (\alpha + \Lambda)(\alpha + 1))$$
.

When $\Lambda \in \mathbb{Z}_{\geq 2}$, $\alpha \in \mathbb{Z}$ and $1 - \Lambda \leq \alpha \leq -1$ this is a single isomorphism class denoted by $R^{\mathfrak{sl}_2}(\Lambda)$ (case (2, -+)). Its weight diagram is

The generalization of $R_{\mu_1,\mu_2,t}$ for arbitrary \mathfrak{g} is

Definition

Define the \mathfrak{g} -module for $\lambda \in P$, $\alpha \in \mathbb{C}$

$$\mathsf{R}(\lambda,\alpha) = \mathcal{U}\,\mathfrak{g} \otimes_{\mathcal{U}\mathfrak{p}_i} \left(\mathbb{C}_\lambda \otimes_{\mathbb{C}} \mathsf{R}^{\mathfrak{sl}_2}(\lambda(h_i),\alpha) \right)$$

Here \mathfrak{p}_i acts on $\mathbb{C}_{\lambda} \otimes_{\mathbb{C}} \mathsf{R}^{\mathfrak{sl}_2}(\lambda(h_i), \alpha)$ via the projection

$$\mathfrak{p}_i \twoheadrightarrow \mathfrak{p}_i/\mathfrak{n}_i = \mathfrak{g}_i = \{h \in \mathfrak{h} \mid \alpha_i(h) = 0\} \oplus \mathfrak{g}'_i$$
.

The generalization of $R_{\mu_1,\mu_2,t}$ for arbitrary \mathfrak{g} is

Definition

Define the \mathfrak{g} -module for $\lambda \in P$, $\alpha \in \mathbb{C}$

$$\mathsf{R}(\lambda,\alpha) = \mathcal{U}\,\mathfrak{g} \otimes_{\mathcal{U}\mathfrak{p}_i} \left(\mathbb{C}_\lambda \otimes_{\mathbb{C}} \mathsf{R}^{\mathfrak{sl}_2}(\lambda(h_i),\alpha) \right)$$

Here \mathfrak{p}_i acts on $\mathbb{C}_{\lambda} \otimes_{\mathbb{C}} \mathsf{R}^{\mathfrak{sl}_2}(\lambda(h_i), \alpha)$ via the projection

$$\mathfrak{p}_i \twoheadrightarrow \mathfrak{p}_i/\mathfrak{n}_i = \mathfrak{g}_i = \{h \in \mathfrak{h} \mid \alpha_i(h) = 0\} \oplus \mathfrak{g}'_i$$
.

Put $\mathbb{R}^{\mathfrak{sl}_2}(\lambda(h_i))$ to get the isomorphism class $\mathbb{R}(\lambda)$.

The first observation one can make about this definition is that the underlying \mathfrak{h} -module of $R(w \cdot \lambda, \alpha)$ coincides with the \mathfrak{h} -module $\overline{H^0}(X, \mathcal{R}_{*w}(\lambda, \alpha))$ described earlier.

The first observation one can make about this definition is that the underlying \mathfrak{h} -module of $R(w \cdot \lambda, \alpha)$ coincides with the \mathfrak{h} -module $\overline{H^0}(X, \mathcal{R}_{*w}(\lambda, \alpha))$ described earlier.

In the rest of the presentation we will explain the cases in which we can prove that this induced module is indeed the (dual of the) g-module of global sections.

Theorem

 $\mathrm{H}^{j}(X, i'_{\mathfrak{s}_{i}*}\mathcal{M}) \cong \mathcal{U} \mathfrak{g} \otimes_{\mathcal{U}\mathfrak{p}_{i}} \mathrm{H}^{j}(\mathbb{P}^{1}, \mathcal{M})$ as \mathfrak{g} -module

Theorem

$$\mathrm{H}^{j}(X,i'_{s_{i}*}\mathcal{M})\cong\mathcal{U}\,\mathfrak{g}\otimes_{\mathcal{U}\mathfrak{p}_{i}}\mathrm{H}^{j}(\mathbb{P}^{1},\mathcal{M})$$
 as \mathfrak{g} -module

Together with the description of the cohomology of twisted \mathcal{D} -modules obtained as direct images from $X_{s_i} \cap s_i X_{s_i} \cong \mathbb{C}^{\times} \hookrightarrow \mathbb{P}^1$ (arXiv:1509.05299 [math.RT])

Theorem

$$\mathrm{H}^{j}(X, i'_{\mathfrak{s}_{i}*}\mathcal{M}) \cong \mathcal{U} \mathfrak{g} \otimes_{\mathcal{U} \mathfrak{p}_{i}} \mathrm{H}^{j}(\mathbb{P}^{1}, \mathcal{M})$$
 as \mathfrak{g} -module

Together with the description of the cohomology of twisted \mathcal{D} -modules obtained as direct images from $X_{s_i} \cap s_i X_{s_i} \cong \mathbb{C}^{\times} \hookrightarrow \mathbb{P}^1$ (arXiv:1509.05299 [math.RT]) this gives a description of the g-modules $\overline{H^j}(X, \mathcal{R}_{?s_i}(\lambda, \alpha))$ for $j \in \{0, 1\}$ and all values of $?, \lambda, \alpha$ in terms of the above $\mathbb{R}(\lambda, \alpha)$ and obvious modifications thereof.

Exact auto-equivalence \widetilde{s}_{i*} of $Hol(\lambda)$

The automorphism $s := \widetilde{s_i} = e^{e_i} e^{-f_i} e^{e_i}$ of X descends to affine morphisms $s_l^{l+\Delta} : X_{l+\Delta}^{\leq w} \to X_l^{\leq w}$ for w such that $s_i w < w$ and $\Delta \geq 4$.
Exact auto-equivalence \widetilde{s}_{i*} of $Hol(\lambda)$

The automorphism $s := \widetilde{s_i} = e^{e_i} e^{-f_i} e^{e_i}$ of X descends to affine morphisms $s_l^{l+\Delta} : X_{l+\Delta}^{\leq w} \to X_l^{\leq w}$ for w such that $s_i w < w$ and $\Delta \geq 4$. The functor $s_{l*}^{l+\Delta}$ is an exact equivalence

$$\mathsf{Hol}\left(\mathcal{D}_{X_{l+\Delta}^{\leq w}}^{(s_{l}^{l+\Delta})^{*}\mathcal{O}_{X_{l}^{\leq w}}(\lambda)}, \overline{X_{w}}\right) \to \mathsf{Hol}\left(\mathcal{D}_{X_{l}^{\leq w}}^{\mathcal{O}_{X_{l}^{\leq w}}(\lambda)}, \overline{X_{w}}\right)$$

Exact auto-equivalence \widetilde{s}_{i*} of $Hol(\lambda)$

The automorphism $s := \widetilde{s_i} = e^{e_i} e^{-f_i} e^{e_i}$ of X descends to affine morphisms $s_l^{l+\Delta} : X_{l+\Delta}^{\leq w} \to X_l^{\leq w}$ for w such that $s_i w < w$ and $\Delta \geq 4$. The functor $s_{l*}^{l+\Delta}$ is an exact equivalence

$$\mathsf{Hol}\left(\mathcal{D}_{X_{l+\Delta}^{\leq w}}^{(s_{l}^{l+\Delta})^{*}\mathcal{O}_{X_{l}^{\leq w}}(\lambda)}, \overline{X_{w}}\right) \to \mathsf{Hol}\left(\mathcal{D}_{X_{l}^{\leq w}}^{\mathcal{O}_{X_{l}^{\leq w}}(\lambda)}, \overline{X_{w}}\right)$$

Identifying $(s_l^{l+\Delta})^* \mathcal{O}_{X_l^{\leq w}}(\lambda) = \mathcal{O}_{X_{l+\Delta}^{\leq w}}(\lambda)$ we get an exact auto-equivalence of $\operatorname{Hol}(\lambda)$.

Exact auto-equivalence \widetilde{s}_{i*} of $Hol(\lambda)$

The automorphism $s := \widetilde{s_i} = e^{e_i} e^{-f_i} e^{e_i}$ of X descends to affine morphisms $s_l^{l+\Delta} : X_{l+\Delta}^{\leq w} \to X_l^{\leq w}$ for w such that $s_i w < w$ and $\Delta \geq 4$. The functor $s_{l*}^{l+\Delta}$ is an exact equivalence

$$\mathsf{Hol}\left(\mathcal{D}_{X_{l+\Delta}^{\leq w}}^{(s_{l}^{l+\Delta})^{*}\mathcal{O}_{X_{l}^{\leq w}}(\lambda)}, \overline{X_{w}}\right) \to \mathsf{Hol}\left(\mathcal{D}_{X_{l}^{\leq w}}^{\mathcal{O}_{X_{l}^{\leq w}}(\lambda)}, \overline{X_{w}}\right)$$

Identifying $(s_l^{l+\Delta})^* \mathcal{O}_{X_l^{\leq w}}(\lambda) = \mathcal{O}_{X_{l+\Delta}^{\leq w}}(\lambda)$ we get an exact auto-equivalence of $\operatorname{Hol}(\lambda)$.

Theorem

Let $\mathcal{M} \in \text{Hol}(\lambda)$. Then $H^{j}(X, \tilde{s}_{i*}\mathcal{M}) \cong H^{j}(X, \mathcal{M})^{\tilde{s}_{i}}$, where $(\cdot)^{\tilde{s}_{i}}$ is the twist of the g-module by the automorphism $\tilde{s}_{i} = e^{e_{i}}e^{-f_{i}}e^{e_{i}}$ of g.

Let us abbreviate the isomorphism class $\mathcal{R}_{*w}(\lambda) = \mathcal{R}_{*w}(\lambda, \alpha)$ when $\alpha \in \mathbb{Z}$ (trivial monodromy). Let us abbreviate the isomorphism class $\mathcal{R}_{*w}(\lambda) = \mathcal{R}_{*w}(\lambda, \alpha)$ when $\alpha \in \mathbb{Z}$ (trivial monodromy).

Theorem

Let $\lambda + \rho$ be regular antidominant. Then $\overline{H^0}(X, \mathcal{R}_{*w}(\lambda)) \cong R(w \cdot \lambda)^{\vee}$ as g-module.

We have an isomorphism of g_i -modules

$$\bigoplus_{\mu \in \mathbb{Z} \alpha_i + w \cdot \lambda} \overline{\mathsf{H}^0}(X, \mathcal{R}_{*w}(\lambda))_{\mu}^{\vee} \cong \mathbb{C}_{w \cdot \lambda} \otimes \mathsf{R}^{\mathfrak{sl}_2}((w \cdot \lambda)(h_i))$$

Lemma We have an isomorphism of \mathfrak{g}_i -modules $\bigoplus_{\mu \in \mathbb{Z} \alpha_i + w \cdot \lambda} \overline{\mathsf{H}^0}(X, \mathcal{R}_{*w}(\lambda))_{\mu}^{\vee} \cong \mathbb{C}_{w \cdot \lambda} \otimes \mathsf{R}^{\mathfrak{sl}_2}((w \cdot \lambda)(h_i))$

Thus we have an induced morphism $\phi : \mathbb{R}(w \cdot \lambda) \to \overline{H^0}(X, \mathcal{R}_{*w}(\lambda))^{\vee}$ of \mathfrak{g} -modules. Source and target coincide as \mathfrak{h} -modules. In order to prove that ϕ is an isomorphism it suffices to prove that it injects.

$$0
ightarrow \widetilde{s}_{i*}\mathcal{B}_w(\lambda)
ightarrow \mathcal{R}_{*w}(\lambda)
ightarrow \mathcal{B}_{s_{i}w}(\lambda)
ightarrow 0$$

in Hol(λ). Here $\mathcal{B}_w(\lambda)$ is the *-direct image from the Schubert cell X_w .

$$0
ightarrow \widetilde{s}_{i*}\mathcal{B}_w(\lambda)
ightarrow \mathcal{R}_{*w}(\lambda)
ightarrow \mathcal{B}_{s_iw}(\lambda)
ightarrow 0$$

in Hol(λ). Here $\mathcal{B}_w(\lambda)$ is the *-direct image from the Schubert cell X_w .

We have $\overline{H^1}(X, \widetilde{s_i}_* \mathcal{B}_w(\lambda)) \cong \overline{H^1}(X, \mathcal{B}_w(\lambda))^{\widetilde{s_i}} = 0$. We get a surjection $\overline{H^0}(X, \mathcal{R}_{*w}(\lambda)) \twoheadrightarrow \overline{H^0}(X, \mathcal{B}_{s_iw}(\lambda))$ and hence an injection

$$\psi: \overline{\mathsf{H}^0}(X, \mathcal{B}_{s_iw}(\lambda))^{ee} \hookrightarrow \overline{\mathsf{H}^0}(X, \mathcal{R}_{*w}(\lambda))^{ee} \;.$$

$$0
ightarrow \widetilde{s}_{i*}\mathcal{B}_w(\lambda)
ightarrow \mathcal{R}_{*w}(\lambda)
ightarrow \mathcal{B}_{s_iw}(\lambda)
ightarrow 0$$

in Hol(λ). Here $\mathcal{B}_w(\lambda)$ is the *-direct image from the Schubert cell X_w .

We have $\overline{H^1}(X, \widetilde{s_i}_* \mathcal{B}_w(\lambda)) \cong \overline{H^1}(X, \mathcal{B}_w(\lambda))^{\widetilde{s_i}} = 0$. We get a surjection $\overline{H^0}(X, \mathcal{R}_{*w}(\lambda)) \twoheadrightarrow \overline{H^0}(X, \mathcal{B}_{s_iw}(\lambda))$ and hence an injection

$$\psi: \overline{\mathsf{H}^0}(X, \mathcal{B}_{s_iw}(\lambda))^{\vee} \hookrightarrow \overline{\mathsf{H}^0}(X, \mathcal{R}_{*w}(\lambda))^{\vee}.$$

By Kashiwara-Tanisaki '95 $\overline{H^0}(X, \mathcal{B}_{s_iw}(\lambda))^{\vee} \cong M(s_iw \cdot \lambda).$

$$0
ightarrow \widetilde{s}_{i*}\mathcal{B}_w(\lambda)
ightarrow \mathcal{R}_{*w}(\lambda)
ightarrow \mathcal{B}_{s_iw}(\lambda)
ightarrow 0$$

in Hol(λ). Here $\mathcal{B}_w(\lambda)$ is the *-direct image from the Schubert cell X_w .

We have $\overline{H^1}(X, \widetilde{s_i}_* \mathcal{B}_w(\lambda)) \cong \overline{H^1}(X, \mathcal{B}_w(\lambda))^{\widetilde{s_i}} = 0$. We get a surjection $\overline{H^0}(X, \mathcal{R}_{*w}(\lambda)) \twoheadrightarrow \overline{H^0}(X, \mathcal{B}_{s_iw}(\lambda))$ and hence an injection

$$\psi:\overline{\mathsf{H}^{0}}(X,\mathcal{B}_{s_{i}w}(\lambda))^{\vee}\hookrightarrow\overline{\mathsf{H}^{0}}(X,\mathcal{R}_{*w}(\lambda))^{\vee}.$$

By Kashiwara-Tanisaki '95 $\overline{H^0}(X, \mathcal{B}_{s_iw}(\lambda))^{\vee} \cong M(s_iw \cdot \lambda).$

Similarly, we get an injection $\psi^{\widetilde{s}_i} : \mathsf{M}(s_i w \cdot \lambda)^{\widetilde{s}_i} \hookrightarrow \overline{\mathsf{H}^0}(X, \mathcal{R}_{*w}(\lambda))^{\vee}$.

 $R(w \cdot \lambda)$ does not have nonzero g'_i -finite vectors.

 $\mathsf{R}(w \cdot \lambda)$ does not have nonzero \mathfrak{g}'_i -finite vectors.

This lemma implies

Proposition

Any nonzero submodule of $R(w \cdot \lambda)$ intersects the submodule $M(s_i w \cdot \lambda) \oplus M(s_i w \cdot \lambda)^{\tilde{s_i}}$ nontrivially.

 $R(w \cdot \lambda)$ does not have nonzero g'_i -finite vectors.

This lemma implies

Proposition

Any nonzero submodule of $R(w \cdot \lambda)$ intersects the submodule $M(s_i w \cdot \lambda) \oplus M(s_i w \cdot \lambda)^{\tilde{s_i}}$ nontrivially.

Apply the proposition to ker ϕ . Note that $\phi | M(s_i w \cdot \lambda)$ is a nonzero multiple of ψ and similarly for $\psi^{\widetilde{s}_i}$ to conclude ker $\phi = 0$.