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Relaxed highest weight modules for

ŝl2 after Feigin, Semikhatov,

Sirota,Tipunin



We start with the Lie algebra sl2 = C e ⊕ C h ⊕ C f and define

ŝl2 = sl2 ⊗C C[z , z−1]⊕ CK , where K is central and

[X ⊗ zm,Y ⊗ zn] = [X ,Y ]⊗ zm+n + mδm+n,0 Tr(XY )K .

This endows ŝl2 with the structure of a Lie algebra.

Up to the derivation element this defines the affine Kac-Moody

algebra with Cartan matrix

(
2 −2

−2 2

)
.
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Definition (Semikhatov-Sirota ’97)

Let µ1, µ2 ∈ C and t ∈ C \{0}. The relaxed Verma module

Rµ1,µ2,t is the ŝl2-module generated from a vector v that satisfies

the annihilation conditions

(e ⊗ zn)v = (h ⊗ zn)v = (f ⊗ zn)v = 0 n ≥ 1

and the relations

(f ⊗ 1)(e ⊗ 1)v = −µ1µ2v (h ⊗ 1)v = −(1 + µ1 + µ2)v

Kv = (t − 2)v

by a free action of e ⊗ zn, f ⊗ zn, h ⊗ zn, n ≤ −1.
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Different µ1, µ2 can give rise to isomorphic Rµ1,µ2,t and it is easy

to write out the condition.

To get a first impression about the structure of Rµ1,µ2,t we can

look at the sl2 ⊗ C 1-submodule generated by v . It is a weight

module with weights −(1 + µ1 + µ2) + 2Z, each of which has

multiplicity one. We have (f ⊗ 1)(e ⊗ 1)µj+1v = 0 and

(e ⊗ 1)(f ⊗ 1)−µj v = 0 if these expressions are actually defined

and µj 6= 0 in the second case.
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µ1 /∈ Z, µ2 /∈ Z

case (0)

v

−(µ1 + µ2 + 1)

µ1 ∈ Z≥0, µ2 /∈ Z

case (1,+)

v

µ1 − µ2 + 1

µ1 ∈ Z<0, µ2 /∈ Z

case (1,−)

v

µ1 − µ2 − 1

6



µ1 /∈ Z, µ2 /∈ Z case (0)

v

−(µ1 + µ2 + 1)

µ1 ∈ Z≥0, µ2 /∈ Z case (1,+)

v

µ1 − µ2 + 1

µ1 ∈ Z<0, µ2 /∈ Z case (1,−)

v

µ1 − µ2 − 1
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µ1 ∈ Z<0, µ2 ∈ Z≥0

case (2,−+)

v

µ2 − µ1 + 1µ1 − µ2 − 1

µ1 ∈ Z≥0, µ2 ∈ Z≥0, µ1 ≥ µ2

case (2,++)

v

µ1 − µ2 + 1µ2 − µ1 + 1

µ1 ∈ Z<0, µ2 ∈ Z<0, µ1 ≤ µ2

case (2,−−)

v

µ2 − µ1 − 1µ1 − µ2 − 1
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Coming back to Rµ1,µ2,t , we note that (e ⊗ 1)(f ⊗ 1)−µ1v = 0

implies that the submodule generated by (f ⊗ 1)−µ1v is isomorphic

to a Verma module of highest weight λ = µ1 − µ2 − 1. We will

denote it by Mλ,t .

Let’s formulate a similar statement for (e ⊗ 1)µ1+1v .
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Consider the automorphism of ŝl2 sending K 7→ K and

e ⊗ zn 7→ e ⊗ zn+θ f ⊗ zn 7→ f ⊗ zn−θ h ⊗ zn 7→ h ⊗ zn + θδn,0K .

The vector w = (e ⊗ 1)µ1+1v satisfies

(e ⊗ z≥1)w = (h ⊗ z≥1)w = (f ⊗ z≥0)w = 0

(h ⊗ 1 + (t − 2))w = (t + µ1 − µ2 − 1)w .

Thus w generates a submodule of Rµ1,µ2,t which is isomorphic to a

Verma module twisted by the automorphism for θ = 1. We

will denote it by M
(1)
t+µ1−µ2−1,t .
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So we have the following embeddings

(1,+) Rµ1,µ2,t ←↩ M
(1)
t+µ1−µ2−1,t

(1,−) Mµ1−µ2−1,t ↪→ Rµ1,µ2,t

(2,−+) Mµ1−µ2−1,t ↪→ Rµ1,µ2,t ←↩ M
(1)
t+µ2−µ1−1,t

(2,++) Rµ1,µ2,t ←↩ M
(1)
t+µ2−µ1−1,t ←↩ M

(1)
t+µ1−µ2−1,t

(2,−−) Mµ1−µ2−1,t ↪→ Mµ2−µ1−1,t ↪→ Rµ1,µ2,t

The goal of Semikhatov-Sirota ’97 is to describe which modules

Mλ,t , M
(1)
λ,t or Rµ′1,µ′2,t embed into Rµ1,µ2,t .
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Simplicity of Rµ1,µ2,t

From the above we conclude that µ1 /∈ Z and µ2 /∈ Z is a

necessary condition for Rµ1,µ2,t to be simple.

Theorem (Semikhatov-Sirota ’97)

Rµ1,µ2,t simple ⇔ µ1 /∈ Z and µ2 /∈ Z

and @r , s ∈ Z>0 µ1 − µ2 = r − st or µ2 − µ1 = r − st
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The description of the so-called embedding diagrams for Rµ1,µ2,t is

the main result of Semikhatov-Sirota ’97. These diagrams are

labeled by combining

I, II, III± determined by the row

(0), (1,+), (1,−), (2,−−), . . . determined by the column.
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Example: case III0
+(2,−+)
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Introduction to localization on the

affine flag variety



Let
◦
g be a finite dimensional semisimple Lie algebra over C. The

celebrated theorem of Beilinson-Bernstein ’81 states that the

functor of global sections is an exact equivalence of categories

between the D-modules on the flag variety twisted by the line

bundle associated to a regular dominant weight and the
◦
g-modules

of the corresponding central character.

At present the full analogue of this statement in the case of affine

Kac-Moody algebras is not known. Postponing definitions, let us

start by pointing out related theorems in the case of affine

Kac-Moody algebras g.

In particular, we need to associate a “flag variety” to g.
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A first possibility, in case g is untwisted, is to consider the thin flag

variety defined as a quotient of the loop group by the Iwahori group

scheme X thin = L
◦
G/ L+ I (Beilinson-Drinfeld, Pappas-Rapoport

’08 and others). Here
◦
G is a semisimple algebraic group.

Beilinson-Drinfeld define a category of twisted right D-modules on

X thin and a functor of global sections Γ(X thin, ·) landing in gmod.

Theorem (Beilinson-Drinfeld, P. Shan ’11)

Let λ+ ρ be regular antidominant. The functor Γ(X thin, ·)
between the λ-twisted right D-modules on X thin and gmod is

exact and faithful.

The basic open question is to describe the essential image of this

functor in gmod (conjectural description by Beilinson ’02, I.

Shapiro ’09).
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A second possibility is to consider the Kashiwara flag scheme X .

As we will detail later, it is a scheme, not locally of finite type, but

having an open cover by affine spaces of countable dimension. The

finite dimensional Schubert cells Xw can be defined as subschemes

of X and one again has a notion of twisted D-modules on X and a

functor of global sections.

Recall the notion of the Verma module

M(µ) = U g⊗U b Cµ

of highest weight µ ∈ h∗.

Theorem (Kashiwara-Tanisaki ’95)

The global sections of the ∗- and !-direct image from Xw identify

with M(w · λ)∨ and M(w · λ) respectively when λ+ ρ is regular

antidominant.
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The last two theorems can be combined into

Theorem (Frenkel-Gaitsgory ’09)

Let λ+ ρ be regular antidominant. Γ(X thin, ·) defines an exact

equivalence between the category of λ-twisted right D-modules

on X thin that are equivariant for the pro-unipotent radical of L+ I

and the block of category O of g defined by λ.
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Setup



Affine Kac-Moody algebras

• (h, (αi )i∈I ⊆ h∗, (hi )i∈I ⊆ h) affine Kac-Moody data

• g affine Kac-Moody (Lie) algebra

• g = n− ⊕ h⊕ n triangular decomposition into positive and

negative part n and n− and the Cartan subalgebra h

• b(−) = n(−) ⊕ h Borel and opposite Borel subalgebra

• ei ∈ n, fi ∈ n− simple generators, i ∈ I

• Φ = Φ>0 t Φ<0 positive and negative roots of g
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• n−l Lie ideal of n− given by the root spaces associated to the

negative roots of height ≥ l , l ∈ Z≥0, similarly nl

• gi = C fi ⊕ h⊕ C ei , i ∈ I

• p−i = C ei ⊕ b− and ni ⊕ p−i = g, i ∈ I

• pi = C fi ⊕ b and n−i ⊕ pi = g, i ∈ I

• W Weyl group of g. It acts linearly on h∗. For i ∈ I there is a

simple reflection si ∈W .

• ρ ∈ h∗ such that ρ(hi ) = 1 for all i ∈ I

• w · λ = w(λ+ ρ)− ρ dot-action of W on h∗

• lattice P ⊆ h∗ such that αi ∈ P and P(hi ) ⊆ Z for all i ∈ I

19
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Group schemes

• Pro-unipotent group scheme U = lim←−l
exp(n/nl)

• Pro-unipotent group scheme U(Ψ) ⊆ U, where Ψ ⊆ Φ>0

satisfies (Ψ + Ψ) ∩ Φ>0 ⊆ Ψ, similarly U−(Ψ) ⊆ U−.

• Pro-unipotent group scheme U−l = U−(Φ<0
l ), where

Φ<0
l ⊆ Φ<0 is the subset of negative roots of height ≥ l .

• T = SpecC[P] ∼= Gm
dim h algebraic torus

• B(−) = T n U(−) Borel and opposite Borel group scheme

• Gi reductive group determined by gi and P

• Pi = Gi n U(Φ>0 \ {αi}) and similarly P−i
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Kashiwara flag scheme

Out of the affine Kac-Moody data and the lattice P Kashiwara ’90

constructs a scheme G with a distinguished point 1 ∈ G and

commuting left and right actions of P−i and Pi respectively, for all

i ∈ I .

The Kashiwara flag scheme is defined as X = G/B (quotient by a

locally free action). The so-called Tits extension W̃ of W acts on

G and X . On T -invariant subsets of X , the action of W̃ factors

through W .

21



Kashiwara flag scheme

Out of the affine Kac-Moody data and the lattice P Kashiwara ’90

constructs a scheme G with a distinguished point 1 ∈ G and

commuting left and right actions of P−i and Pi respectively, for all

i ∈ I .

The Kashiwara flag scheme is defined as X = G/B (quotient by a

locally free action). The so-called Tits extension W̃ of W acts on

G and X . On T -invariant subsets of X , the action of W̃ factors

through W .

21



Basic properties

• U−1B ∼= A∞ is an open subscheme of X called big cell.

• X =
⋃

w∈W N(Xw ), where N(Xw ) = wU−1B

• X =
⋃

w∈W X≤w , where X≤w =
⋃

v≤w N(Xv ) is B−-invariant

and quasi-compact and ≤ is the Bruhat partial order

• There is a line bundle OX (λ) on X associated to λ ∈ P.
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For fixed w and all l ∈ Z>0 large enough U−l acts locally freely on

X≤w . The quotient X≤wl = U−l \X
≤w is a smooth quasi-projective

variety (Shan-Varagnolo-Vasserot ’14).

We have for l1 ≥ l2 large enough a commutative diagram

X≤wl1

p
l1
l2 // X≤wl2

Xw

0 P

aa

. �

==

The fibers of the projection pl1l2 are affine spaces and ↪→ are closed

embeddings. Subsequently we will always assume that l is large

enough.
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Twisted D-modules on X

Hol(D
X≤w
l

(λ),Xw ) Category of holonomic right D-modules on

X≤wl twisted by O
X≤w
l

(λ), λ ∈ P, with support in Xw

• It is an abelian category and every object has finite length.

• It has a contravariant exact auto-equivalence D, the

holonomic duality.

• pl1l2∗ : Hol(D
X≤w
l1

(λ),Xw )→ Hol(D
X≤w
l2

(λ),Xw ) exact

equivalence
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Hol(λ,Xw ,X
≤w , l0) 3M =

(
(Ml)l≥l0 , (γ

l1
l2

)l1≥l2≥l0

)
Hol(D

X≤w
l

(λ),Xw ) 3Ml

γ l1l2 : pl1l2∗Ml1

∼=−→Ml2 γ l1l3 = γ l2l3 ◦ p
l2
l3∗γ

l1
l2
, l1 ≥ l2 ≥ l3 ≥ l0

For any l ≥ l0, M 7→Ml is an exact equivalence.

Taking limits we get rid of the auxiliary choices Xw , X≤w and l0

and define the category Hol(λ) of λ-twisted holonomic right

D-modules on X .
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Cohomology groups

For M∈ Hol(λ) and j ∈ Z≥0 define

Hj(X ,M) = lim←−
l

Hj(X≤wl ,Ml) ,

where Hj(X≤wl ,Ml) are the sheaf cohomology groups.

If v ∈ g

there is a m ∈ Z≥0 such that [v , n−l+m] ⊆ n−l for all l . Then v

defines a C-linear map Hj(X≤wl+m,Ml+m)→ Hj(X≤wl ,Ml). In this

way Hj(X ,M) becomes a g-module.

Define

Hj(X ,M) =
⊕
µ∈h∗

Hj(X ,M)µ ,

where (·)µ denotes the generalized weight space associated to µ.

This is a g-submodule of Hj(X ,M).

26



Cohomology groups

For M∈ Hol(λ) and j ∈ Z≥0 define

Hj(X ,M) = lim←−
l

Hj(X≤wl ,Ml) ,

where Hj(X≤wl ,Ml) are the sheaf cohomology groups. If v ∈ g

there is a m ∈ Z≥0 such that [v , n−l+m] ⊆ n−l for all l . Then v

defines a C-linear map Hj(X≤wl+m,Ml+m)→ Hj(X≤wl ,Ml).

In this

way Hj(X ,M) becomes a g-module.

Define

Hj(X ,M) =
⊕
µ∈h∗

Hj(X ,M)µ ,

where (·)µ denotes the generalized weight space associated to µ.

This is a g-submodule of Hj(X ,M).

26



Cohomology groups

For M∈ Hol(λ) and j ∈ Z≥0 define

Hj(X ,M) = lim←−
l

Hj(X≤wl ,Ml) ,

where Hj(X≤wl ,Ml) are the sheaf cohomology groups. If v ∈ g

there is a m ∈ Z≥0 such that [v , n−l+m] ⊆ n−l for all l . Then v

defines a C-linear map Hj(X≤wl+m,Ml+m)→ Hj(X≤wl ,Ml). In this

way Hj(X ,M) becomes a g-module.

Define

Hj(X ,M) =
⊕
µ∈h∗

Hj(X ,M)µ ,

where (·)µ denotes the generalized weight space associated to µ.

This is a g-submodule of Hj(X ,M).

26



Cohomology groups

For M∈ Hol(λ) and j ∈ Z≥0 define

Hj(X ,M) = lim←−
l

Hj(X≤wl ,Ml) ,

where Hj(X≤wl ,Ml) are the sheaf cohomology groups. If v ∈ g

there is a m ∈ Z≥0 such that [v , n−l+m] ⊆ n−l for all l . Then v

defines a C-linear map Hj(X≤wl+m,Ml+m)→ Hj(X≤wl ,Ml). In this

way Hj(X ,M) becomes a g-module.

Define

Hj(X ,M) =
⊕
µ∈h∗

Hj(X ,M)µ ,

where (·)µ denotes the generalized weight space associated to µ.

This is a g-submodule of Hj(X ,M).
26



Coordinates on N(Xw )

For w ∈W abbreviate

U−w = U−(Φ<0 ∩ wΦ<0) ⊆ U−

Uw = U(Φ>0 ∩ wΦ<0) ⊆ U .

The map (u1, u2) 7→ u1u2w1B defines a T -equivariant

isomorphism of schemes

U−w × Uw
∼=−→ N(Xw ) .

The image of 1× Uw is the (finite dimensional) Schubert cell Xw

in X .
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Let w be such that siw < w .

Lemma

We have Xw ∩ siXw = siXw \ Xsiw = Xw \ siXsiw . In the above

coordinates on N(Xw ) and siN(Xw ) = N(Xsiw ) the identity map

siXw \ Xsiw → Xw \ siXsiw is the isomorphism

(U−(−αi ) \ 1)× Usiw → (U(αi ) \ 1)×si Usiw

(ezfi , hi (z)−1uhi (z)) 7→ (ez
−1ei , ṡi

−1ũ(z)ṡi ) .

Here z ∈ Gm and ṡi = eei e−fi eei . hi is considered as a group

homomorphism Gm → T. Given u and z, ũ(z) ∈ Usiw is uniquely

determined by the condition ezeiu ∈ ũ(z)U(Φ>0 ∩ siwΦ>0).
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For siw < w consider the locally closed affine embedding

iw ,l : Xw ∩ siXw ↪→ X≤wl .

Definition

Define the right D
X≤w
l

(λ)-module for λ ∈ P and α ∈ C

R?w (λ, α)l = iw ,l?

((
Ω

(α)

C× � ΩsiUsi w

)
⊗ i∗w ,lOX≤w

l
(λ)
)

? ∈ {∗, !}.

Here we introduced the right DC×-module

Ω
(α)

C× = DC×/(x∂x −α)DC× . The coordinate x on C× is the one of

U(αi ). Thus x =∞ corresponds to Xsiw .

Then R?w (λ, α) = (R?w (λ, α)l)l≥l0 ∈ Hol(λ), where the γ l1l2 are

induced.
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Before describing the cohomology of these D-modules, let us pause

briefly and explain that Xw ∩ siXw can be understood as orbits for

the subgroup L+ I ∩si L+ I of the Iwahori group L+ I acting on

X thin.

Indeed, for siw > w the L+ I -orbit Xw is also a L+ I ∩si L+ I -orbit,

as is siXw . For siw < w the L+ I -orbit Xw splits into two

L+ I ∩si L+ I -orbits

Xw = (Xw ∩ siXw ) t siXsiw .
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The case of ŝl2

X1 Xs0
oo Xs0s1

oo

yy

Xs0s1s0
oo

xx
Xs1 ∩ s1Xs1

}}

aa

Xs1s0 ∩ s1Xs1s0

ee

oo

yy

Xs1s0s1 ∩ s1Xs1s0s1

ff

oo

xx

. . .

s1X1 s1Xs0
oo s1Xs0s1

ee

oo s1Xs0s1s0
oo

ff

The arrows indicate the closure relations.
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Overview of results



Plan

We will identify the global sections of R?w (λ, α) as a g-module

for some choices of the parameters ?,w , λ, α following the

methods of Kashiwara-Tanisaki ’95. We thereby extend several of

their results to a class of non-highest weight representations which

we call relaxed highest weight because they generalize the

ŝl2-representations that we have seen earlier.

We will start by discussing the h-module structure.

We then introduce candidate g-modules.

We identify these candidate g-modules with the (dual of the)

g-module of global sections.
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h-module structure of global sections

Theorem

We have isomorphisms of h-modules

1. H0(X≤wl ,R∗w (λ, α)l) ∼= C[z , z−1]⊗C S(n−i /n
−
l )⊗CCsiw ·λ+ααi

2. H0(X ,R∗w (λ, α)) ∼= C[z , z−1]⊗C S n−i ⊗C Csiw ·λ+ααi

Here z has weight αi .
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Sketch of proof

Consider the following factorization of iw ,l : Xw ∩ siXw ↪→ X≤wl

Xw ∩ siXw ↪→ Xw ↪→ N(Xw )l ∼= (U−l \U
−
w )× Uw ↪→ X≤wl .

The first and third embedding are open and affine, while the

second embedding is closed.

By definition H0(X≤wl ,R∗w (λ, α)l)
∼=−→ H0(N(Xw )l ,R∗w (λ, α)l)

and there is the explicit description of the ∗-direct image w.r.t. the

second embedding κw ,l : Xw ↪→ N(Xw )l

κw ,l∗M = κw ,l ·M⊗C C[∂1, . . . , ∂r ] ,

where M is any right D-module on Xw and r = dimU−l \U
−
w .
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Cohomology vanishing

Lemma

Hj(X≤wl ,R∗w (λ, α)l) = 0 and consequently

Hj(X ,R∗w (λ, α)) = 0 for j > 0.

This is again proven using the fact that

Hj(X≤wl ,R∗w (λ, α)l)
∼=−→ Hj(N(Xw )l ,R∗w (λ, α)l) and the above

explicit description of the ∗-direct image.
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Definition

Define the sl2-module for Λ, α ∈ C

Rsl2(Λ, α) = U sl2/(h + 2α + Λ, ef + (α + Λ)(α + 1)) .

When Λ ∈ Z≥2, α ∈ Z and 1− Λ ≤ α ≤ −1 this is a single

isomorphism class denoted by Rsl2(Λ) (case (2,−+)). Its weight

diagram is

Λ− 2 Λ−Λ + 2−Λ
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Relaxed Verma modules

The generalization of Rµ1,µ2,t for arbitrary g is

Definition

Define the g-module for λ ∈ P, α ∈ C

R(λ, α) = U g⊗U pi

(
Cλ⊗C Rsl2(λ(hi ), α)

)
.

Here pi acts on Cλ⊗C Rsl2(λ(hi ), α) via the projection

pi � pi/ni = gi = {h ∈ h | αi (h) = 0} ⊕ g′i .

Put Rsl2(λ(hi )) to get the isomorphism class R(λ).
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The first observation one can make about this definition is that the

underlying h-module of R(w · λ, α) coincides with the h-module

H0(X ,R∗w (λ, α)) described earlier.

In the rest of the presentation we will explain the cases in which we

can prove that this induced module is indeed the (dual of the)

g-module of global sections.
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The case w = si

Let M be a holonomic right D-module on Xsi
∼= P1 twisted by

OP1(−λ(hi )). Let i ′si ,l : Xsi ↪→ X≤sil be the closed embedding.

Then i ′si∗M = (i ′si ,l∗M)l≥l0 ∈ Hol(λ).

Theorem

Hj(X , i ′si∗M) ∼= U g⊗U pi Hj(P1,M) as g-module

Together with the description of the cohomology of twisted

D-modules obtained as direct images from Xsi ∩ siXsi
∼= C× ↪→ P1

(arXiv:1509.05299 [math.RT]) this gives a description of the

g-modules Hj(X ,R?si (λ, α)) for j ∈ {0, 1} and all values of ?, λ, α

in terms of the above R(λ, α) and obvious modifications thereof.
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Exact auto-equivalence s̃i ∗ of Hol(λ)

The automorphism s := s̃i = eei e−fi eei of X descends to affine

morphisms s l+∆
l : X≤wl+∆ → X≤wl for w such that siw < w and

∆ ≥ 4.

The functor s l+∆
l∗ is an exact equivalence

Hol

(
D

(s l+∆
l )∗O

X
≤w
l

(λ)

X≤w
l+∆

,Xw

)
→ Hol

(
D
O

X
≤w
l

(λ)

X≤w
l

,Xw

)
.

Identifying (s l+∆
l )∗O

X≤w
l

(λ) = O
X≤w
l+∆

(λ) we get an exact

auto-equivalence of Hol(λ).

Theorem

Let M∈ Hol(λ). Then Hj(X , s̃i ∗M) ∼= Hj(X ,M)s̃i , where (·)s̃i

is the twist of the g-module by the automorphism s̃i = eei e−fi eei

of g.
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The case of R∗w (λ)

Let us abbreviate the isomorphism class R∗w (λ) = R∗w (λ, α)

when α ∈ Z (trivial monodromy).

Theorem

Let λ+ ρ be regular antidominant. Then

H0(X ,R∗w (λ)) ∼= R(w · λ)∨ as g-module.
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Sketch of proof

Lemma

We have an isomorphism of gi -modules⊕
µ ∈ Zαi+w ·λ

H0(X ,R∗w (λ))∨µ
∼= Cw ·λ⊗Rsl2((w · λ)(hi ))

Thus we have an induced morphism

φ : R(w · λ)→ H0(X ,R∗w (λ))∨ of g-modules. Source and target

coincide as h-modules. In order to prove that φ is an isomorphism

it suffices to prove that it injects.
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We have a short exact sequence

0→ s̃i ∗Bw (λ)→ R∗w (λ)→ Bsiw (λ)→ 0

in Hol(λ). Here Bw (λ) is the ∗-direct image from the Schubert cell

Xw .

We have H1(X , s̃i ∗Bw (λ)) ∼= H1(X ,Bw (λ))s̃i = 0. We get a

surjection H0(X ,R∗w (λ)) � H0(X ,Bsiw (λ)) and hence an

injection

ψ : H0(X ,Bsiw (λ))∨ ↪→ H0(X ,R∗w (λ))∨ .

By Kashiwara-Tanisaki ’95 H0(X ,Bsiw (λ))∨ ∼= M(siw · λ).

Similarly, we get an injection ψs̃i : M(siw ·λ)s̃i ↪→ H0(X ,R∗w (λ))∨.
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Lemma

R(w · λ) does not have nonzero g′i -finite vectors.

This lemma implies

Proposition

Any nonzero submodule of R(w · λ) intersects the submodule

M(siw · λ)⊕M(siw · λ)s̃i nontrivially.

Apply the proposition to ker φ. Note that φ|M(siw · λ) is a

nonzero multiple of ψ and similarly for ψs̃i to conclude ker φ = 0.

44



Lemma

R(w · λ) does not have nonzero g′i -finite vectors.

This lemma implies

Proposition

Any nonzero submodule of R(w · λ) intersects the submodule

M(siw · λ)⊕M(siw · λ)s̃i nontrivially.

Apply the proposition to ker φ. Note that φ|M(siw · λ) is a

nonzero multiple of ψ and similarly for ψs̃i to conclude ker φ = 0.

44



Lemma

R(w · λ) does not have nonzero g′i -finite vectors.

This lemma implies

Proposition

Any nonzero submodule of R(w · λ) intersects the submodule

M(siw · λ)⊕M(siw · λ)s̃i nontrivially.

Apply the proposition to ker φ. Note that φ|M(siw · λ) is a

nonzero multiple of ψ and similarly for ψs̃i to conclude ker φ = 0.

44


	Relaxed highest weight modules for sl2"0362sl2 after Feigin, Semikhatov, Sirota,Tipunin
	Introduction to localization on the affine flag variety
	Setup
	Overview of results

