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Quote from Ramanujan’s First Letter to Hardy

Page 3, Item (4)

1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, . . . are numbers which are either
themselves squares or which can be expressed as the sum of two
squares.
The number of such numbers greater than A and less than B

= K

∫ B

A

dx√
log x

+ θ(x) (1)

where K = .764 and θ(x) is very small when compared with the
previous integral. K and θ(x) have been exactly found though
complicated.

(θ(x) should be replaced by θ(B).)
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Quote from Hardy

The dominant term, viz. KB(log B)−1/2, in Rammanu-
jan’s notation, was first obtained by Landau in 1908. Ra-
manujan had none of Landau’s weapons at his command;
. . . It is sufficiently marvellous that he should have even
dreamt of problems such as these, problems which it has
taken the finest mathematicians in Europe a hundred years
to solve . . .

G. H. Hardy
Collected Papers of Srinivasa Ramanujan, p. xxiv
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G. H. Hardy and J. E. Littlewood

Figure: G. H. Hardy and J. E. Littlewood
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Appearances in Ramanujan’s Notebooks

page 307 of Ramanujan’s second notebook.

The no. sum of two squares between A and B

= C

∫ B

A

dx√
log x

nearly where C = .764

C =
1√

2(1 )(1 )(1 )(1 )&c
3, 7

(Underneath the last equality sign appears: 9 7 ε[?].) Indeed,
Ramanujan did not specify the expressions within his parentheses.
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Appearances in Ramanujan’s Notebooks

page 350 of Ramanujan’s third notebook.

K =

√
1

2

∏
r

(
1

1− 1/r2

)
,

where r runs through the primes of the form 4m + 3.

Surprisingly, Ramanujan sketches a proof of his claim in the
third notebook.

More space (the entire page) is devoted to his proof than any
other argument or proof in the notebooks.

The third notebook may not have been available to Hardy and
Watson. Watson’s handwritten personal copy of the
notebooks does not contain the third notebook.
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Circle Problem

Let r2(n) denote the number of representations of the positive
integer n as a sum of two squares. Different signs and different
orders of the summands yield distinct representations. E.g.,

5 = (±2)2 + (±1)2, r2(5) = 8.

Each representation of n as a sum of two squares can be associated
with a lattice point in the plane. For example, 5 = (−2)2 + 12 can
be associated with the lattice point (−2, 1). Then each lattice
point can be associated with a unit square, say that unit square for
which the lattice point is in the southwest corner.
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The Circle Problem

Circle Problem
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Circle Problem

R(x) :=
∑

0≤n≤x

′
r2(n) = πx + P(x), (2)

where the prime ′ on the summation sign on the left side indicates
that if x is an integer, only 1

2 r2(x) is counted.

R(x) < π(
√
x +
√

2)2,

R(x) > π(
√
x −
√

2)2,

R(x) = πx + O(
√
x) Gauss
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Bounds for P(x)

The current best result is due to M. N. Huxley in 2003, namely, for
every ε > 0,

P(x) = O(x131/416+ε), (3)

as x →∞. Note that

131
416 = 0.3149 . . . .

P(x) = Ω±(x1/4), as x →∞.

Conjecture: For every ε > 0,

P(x) = O(x1/4+ε), x →∞.
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Best Ω-result

G. H. Hardy, On the expression of a number as the sum of two
squares, Quart. J. Math. (Oxford) 46 (1915), 263–283.
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Circle Problem

Ramanujan (1914?) and Hardy (1915) proved that

∑
n≤x

′
r2(n) = πx +

∞∑
n=1

r2(n)
(x
n

)1/2
J1(2π

√
nx). (4)

Jν(z) :=
∞∑
n=0

(−1)n

n!Γ(ν + n + 1)

(z
2

)ν+2n
, 0 < |z | <∞, ν ∈ C.

“The form of this equation was suggested to me by
Mr. S. Ramanujan, to whom I had communicated the analogous
formula for d(1) + d(2) + · · ·+ d(n), where d(n) is the number of
divisors of n.”
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Another Beautiful Identity of Ramanujan as Recorded by
Hardy

If a, b > 0, then

∞∑
n=0

r2(n)√
n + a

e−2π
√

(n+a)b =
∞∑
n=0

r2(n)√
n + b

e−2π
√

(n+b)a, (5)

which is not given anywhere in Ramanujan’s work.

If we differentiate (5) with respect to b, let a→ 0, replace 2π
√
b

by s, and use analytic continuation, we find that, for Re s > 0,

∞∑
n=1

r2(n)e−s
√
n =

2π

s2
− 1 + 2πs

∞∑
n=1

r2(n)

(s2 + 4π2n)3/2
,

which was the key identity in Hardy’s proof of

P(x) = Ω±(x1/4), as x →∞.
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An Elementary Formula

Identity of Jacobi

r2(n) = 4
∑
d |n

d odd

(−1)(d−1)/2.

∑
0<n≤x

′
r2(n) = 4

∑
0<n≤x

′∑
d |n

sin

(
πd

2

)

= 4
∑

0<dj≤x

′
sin

(
πd

2

)

= 4
∑

0<d≤x

′ [ x
d

]
sin

(
πd

2

)
,

where [x ] is the greatest integer ≤ x .
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First Identity

An identity involving r2(n) found in
a one-page manuscript published with

Ramanujan’s Lost Notebook.
p. 335
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Page 335 in Ramanujan’s Lost Notebook
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The First Entry

Entry

Let J1(x) denote the ordinary Bessel function of order 1, let
0 < θ < 1, and let x > 0. Then

∑
n≤x

′ [x
n

]
sin(2πnθ) = πx

(
1

2
− θ
)
− 1

4
cot(πθ)

+
1

2

√
x
∞∑

m=1

∞∑
n=0

J1
(

4π
√
m(n + θ)x

)
√

m(n + θ)
−

J1
(

4π
√
m(n + 1− θ)x

)
√
m(n + 1− θ)

 .

BCB, S. Kim and A. Zaharescu, The circle and divisor problems,
and double series of Bessel functions, Adv. Math. 236 (2013),
24–59.
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Sun Kim

Figure: Sun Kim at Graduation with Her Advisor
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Version of BCB & Zaharescu

Theorem

Let J1(x) denote the ordinary Bessel function of order 1, let
0 < θ < 1, and let x > 0. Then

∑
n≤x

′ [x
n

]
sin(2πnθ) = πx

(
1

2
− θ
)
− 1

4
cot(πθ)

+
1

2

√
x
∞∑
n=0

∞∑
m=1

J1
(

4π
√
m(n + θ)x

)
√

m(n + θ)
−

J1
(

4π
√
m(n + 1− θ)x

)
√
m(n + 1− θ)

 .

BCB and A. Zaharescu, Weighted divisor sums and Bessel function
series, Math. Ann. 335 (2006), 249–283.
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Remarks

Note the case θ = 1
4 ,

∑
0<n≤x

′
r2(n) = 4

∑
0<d≤x

′ [ x
d

]
sin

(
πd

2

)

Recall ∑
n≤x

′
r2(n) = πx +

∞∑
n=1

r2(n)
(x
n

)1/2
J1(2π

√
nx).

Can we use the “extra” parameter θ to attack the circle
problem?
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Another Result from Ramanujan’s First Letter to Hardy

(3) Let us take the number of divisors of natural numbers, viz.
1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, . . . (1 having 1 divisor, 2 having
2, 3 having 2, 4 having 3, 5 having 2,
. . . ). The sum of such numbers to n terms

= n(2γ − 1 + log n) +
1

2
of the number of divisors of n

where γ = .5772156649 . . . , the Eulerian Constant.
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Dirichlet divisor problem

Let d(n) denote the number of positive divisors of the positive
integer n. Let

D(x) :=
∑
n≤x

′
d(n),

where the prime ′ indicates that if x is an integer, then we only
count 1

2d(x). We see that

D(x) =
∑
n≤x

′∑
d |n

1 =
∑
dj≤x

′
1 =

∑
d≤x

′ ∑
1≤j≤x/d

1 =
∑
d≤x

′ [ x
d

]
,

where [x ] is the greatest integer less than or equal to x .
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Geometric Interpretation

If n = dj , as above, we observe that n is uniquely associated with
the lattice point (d , j) in the first quadrant under or on the
hyperbola ab = x . Hence, D(x) is equal to the number of lattice
points in the first quadrant under or on the hyperbola ab = x .

Dirichlet’s divisor problem is equivalent to the problem of
estimating the number of lattice points under or on a certain
hyperbola.
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Geometrical Interpretation

b

a

ab = x

√
x

√
x

I
III

II
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Dirichlet Divisor Problem

Theorem

For x > 0,

D(x) :=
∑
n≤x

′
d(n) = x(log x + 2γ − 1) +

1

4
+ ∆(x), (6)

where γ is Euler’s constant, and ∆(x) is the “error term.” Then,
as x →∞,

∆(x) = O(
√
x). (7)

The Dirichlet divisor problem asks for the correct order of
magnitude of ∆(x) as x →∞.
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Definitions of Bessel Functions

Iν(z) := −Yν(z)− 2

π
Kν(z), (8)

where Yν(z) denotes the Bessel function of imaginary argument of
order ν given by

Yν(z) :=
Jν(z) cos(νπ)− J−ν(z)

sin(νπ)
, |z | <∞, (9)

and Kν(z) denotes the modified Bessel function of order ν defined
by

Kν(z) :=
π

2

eπiν/2J−ν(iz)− e−πiν/2Jν(iz)

sin(νπ)
, −π < arg z < 1

2π.

(10)
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Voronöı’s Formula

∑
n≤x

′
d(n) = x (log x + 2γ − 1) +

1

4
+
∞∑
n=1

d(n)
(x
n

)1/2
I1(4π

√
nx),

(11)
where x > 0, γ denotes Euler’s constant, and I1(z) is defined by

Iν(z) := −Yν(z)− 2

π
Kν(z). (12)
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Voronöı’s Bound for ∆(x)

In deriving the first improvement on Dirichlet’s upper bound for
∆(x), in 1904, Voronöı proved that

∆(x) = O(x1/3 log x), x →∞.

The current best result is due to M. N. Huxley in 2003, namely, for
every ε > 0,

∆(x) = O(x131/416+ε),

as x →∞.
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Second Identity

An identity involving d(n) found in
a one-page manuscript published with

Ramanujan’s Lost Notebook.
p. 335
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Ramanujan’s Second Identity

Entry (p. 335)

For x > 0 and 0 < θ < 1,∑
n≤x

′ [x
n

]
cos(2πnθ) =

1

4
− x log(2 sin(πθ)) (13)

+
1

2

√
x
∞∑

m=1

∞∑
n=0

 I1
(

4π
√
m(n + θ)x

)
√
m(n + θ)

+
I1
(

4π
√
m(n + 1− θ)x

)
√
m(n + 1− θ)

 ,

where

Iν(z) := −Yν(z)− 2

π
Kν(z).
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Remarks

N Note the left side when θ = 0.

D(x) =
∑
d≤x

′ [ x
d

]
,

N ∑
n≤x

′
d(n) = x (log x + 2γ − 1)+

1

4
+
∞∑
n=1

d(n)
(x
n

)1/2
I1(4π

√
nx),

N Our first theorem. If we invert the order of
summation and assume convergence for one value
of θ, then we can prove the identity for all values
of θ.

N BCB, S. Kim and A. Zaharescu, Weighted divisor
problems and Bessel function series, II,
Adv. Math. 229 (2012), 2055–2097.
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The Final Problem

G. N. Watson, The final problem: An account of the mock theta
functions, J. London Math. Soc. 11 (1936), 55–80.

The Adventure of the Final Problem is probably the most famous
of all the Sherlock Holmes stories written by Sir Arthur Conan
Doyle.

Sherlock Holmes’ famous sidekick was Dr. Watson.
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Final Problem for George Andrews and Myself

The identity involving the divisor function d(n)
on page 335 of Ramanujan’s Lost Notebook.

This was OUR Final Problem.
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Final Problem Has Been Solved

BCB, J. Li, and A. Zaharescu, The final problem: an identity from
Ramanujan’s lost notebook, J. London Math. Soc. 100 (2019),
568–591.

BCB, J. Li, and A. Zaharescu, The Final Problem: A Series
Identity From The Lost Notebook, in: George Andrews 80 Years
of Combinatory Analysis , K. Alladi, B. C. Berndt, P. Paule,
J. Sellers, and A. J. Yee, eds., Birkhäuser, 2021, pp. 783–790.
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Junxian Li and Alexandru Zaharescu

Figure: Alexandru Zaharescu and Junxian Li
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Sketch of the Proof

1 The series on the right-hand side of (13) does not converge
absolutely.

2 Use asymptotic formulas for Bessel functions Y1(x),K1(x)
3 Denominators

√
(n + θ),

√
(n + 1− θ). Add two complex

variables s and w . Consider (n + θ)s , (n + 1− θ)w . Use
analytic continuation.

4 We show that the series converges uniformly with respect to θ
in any compact subinterval in (0, 1), provided that

Re(s) > 1
4 ,Re(w) > 1

4 ,Re(s) + Re(w) > 25
26 , if x is an integer,

Re(s) > 1
4 ,Re(w) > 1

4 ,Re(s) + Re(w) > 5
6 , if x is not an integer.

5 Must consider separately the case when x is an integer or not
an integer.

6 Must divide the intervals (0,∞) for each summation variable
in intervals for both “small” and “large” values of m and n.
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Sketch of the Proof, Continued

1 There are discontinuities on both sides of (13). We want to
eliminate them. We multiply both sides by sin2(πθ). Thus
both sides are continuous on [0, 1].

2 Isolate the series of Bessel functions on the right-hand side.

3 We calculate the Fourier series on both sides of the amended
identity. We show that the Fourier series are identical.

4 Because both sides of our identity are continuous, we can
appeal to the uniqueness theorem for Fourier series to
conclude that the functions are identical.

Balanced Derivatives, Identities, and Bounds for Trigonometric Sums and Bessel Series



Sketch of the Proof, Continued

1 There are discontinuities on both sides of (13). We want to
eliminate them. We multiply both sides by sin2(πθ). Thus
both sides are continuous on [0, 1].

2 Isolate the series of Bessel functions on the right-hand side.

3 We calculate the Fourier series on both sides of the amended
identity. We show that the Fourier series are identical.

4 Because both sides of our identity are continuous, we can
appeal to the uniqueness theorem for Fourier series to
conclude that the functions are identical.

Balanced Derivatives, Identities, and Bounds for Trigonometric Sums and Bessel Series



Sketch of the Proof, Continued

1 There are discontinuities on both sides of (13). We want to
eliminate them. We multiply both sides by sin2(πθ). Thus
both sides are continuous on [0, 1].

2 Isolate the series of Bessel functions on the right-hand side.

3 We calculate the Fourier series on both sides of the amended
identity. We show that the Fourier series are identical.

4 Because both sides of our identity are continuous, we can
appeal to the uniqueness theorem for Fourier series to
conclude that the functions are identical.

Balanced Derivatives, Identities, and Bounds for Trigonometric Sums and Bessel Series



Sketch of the Proof, Continued

1 There are discontinuities on both sides of (13). We want to
eliminate them. We multiply both sides by sin2(πθ). Thus
both sides are continuous on [0, 1].

2 Isolate the series of Bessel functions on the right-hand side.

3 We calculate the Fourier series on both sides of the amended
identity. We show that the Fourier series are identical.

4 Because both sides of our identity are continuous, we can
appeal to the uniqueness theorem for Fourier series to
conclude that the functions are identical.

Balanced Derivatives, Identities, and Bounds for Trigonometric Sums and Bessel Series



Reference

BCB, S. Kim and A. Zaharescu, Weighted divisor sums and Bessel
function series, III, J. Reine Angew. Math. 683 (2013), 67–96.
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Trigonometric Sums

Let

SS(x) := SS(σ, θ; x) :=
∑
mn≤x

′
mn sin(2πmσ) sin(2πnθ). (14)
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Conjecture for SS(σ, θ; x)

Conjecture

If SS(σ, θ; x) is defined by (14). Then, for every ε > 0, as x →∞,

SS(σ, θ; x) = Ω±(x5/4)
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Theorem for SS(σ, θ; x)

Theorem

As x →∞, for every ε > 0,

SS(σ, θ; x) = O(x4/3+ε).

4

3
= 1.333 . . . ,

5

4
= 1.25.

Conjecture

If SS(σ, θ; x) is defined by (14). Then, for every ε > 0, as x →∞,

SS(σ, θ; x) = O(x5/4+ε)
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Special Case: A Lattice Point Problem

Let θ = σ = 1
4 . Then

sin(2πn/4) =

{
(−1)(n−1)/2, n odd,

0, n even.

Then

SS(14 ,
1
4 ; x) = −

∑
mn≤x
m,n odd

mn(−1)(m+n)/2

=
∑

(2j+1)(2k+1)≤x

(−1)j+k(2j + 1)(2k + 1), (15)

where we set m = 2j + 1, n = 2k + 1. This is a rather interesting
lattice point problem. We are counting lattice points under the
hyperbola ab ≤ x , but we require both coordinates to be odd and
we put a weight on them.
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Multiple Sine Sums

S(a1, a2, . . . ak ; p1, p2, . . . pk ; x) :=∑′

1≤n1n2···nk≤x
n1n2 · · · nk sin(2πn1a1/p1) sin(2πn2a2/p2) · · · sin(2πnkak/pk).

Conjecture

S(a1, a2, . . . , ak ; p1, p2, . . . , pk ; x) = Ω(x (3k−1)/(2k))
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Big O Theorem

Theorem

For every ε > 0, as x →∞,

S(a1, a2, . . . , ak ; p1, p2, . . . , pk ; x) = O
(
x2k/(k+1)+ε

)
. (16)

Note that
2(k + 1)

k + 2
− 2k

k + 1
=

2

(k + 1)(k + 2)

is the difference in the exponents of (16) for successive values of k .
Thus, increasing the number of sin’s by 1 in
S(a1, a2, . . . , ak ; p1, p2, . . . , pk ; x) increases the upper bound for
the power in the error term by a “small” amount, i.e., O(1/k2).
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Another Remark on Big O

2k

k + 1
− 3k − 1

2k
=

(k − 1)2

2k(k + 1)
=

1

12

k = 2,
4

3
− 5

4
=

1

12
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Derivatives

Can we take partial derivatives?

Yes, if we take “balanced” partial derivatives.

Definition

If we take the same number of derivatives in σ and in θ, we say
that the identities thus obtained are “balanced”.

If we have an unbalanced number of derivatives, we are unable to
establish convergence.
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First “Balanced” Result

Theorem

Let σ, θ be in the interval (0, 1), and let x > 0. Then for every
non-negative integer k,

∂2k

∂σk∂θk

{∑
mn≤x

′
cos(2πmσ) sin(2πnθ) +

cot(πθ)

4

}

=

√
x

4

∞∑
m=0

∞∑
n=0

∂2k

∂σk∂θk{
J1(4π

√
(m + σ)(n + θ)x)√

(m + σ)(n + θ)
+

J1(4π
√

(m + 1− σ)(n + θ)x)√
(m + 1− σ)(n + θ)

−
J1(4π

√
(m + σ)(n + 1− θ)x)√

(m + σ)(n + 1− θ)
−

J1(4π
√

(m + 1− σ)(n + 1− θ)x)√
(m + 1− σ)(n + 1− θ)

}
.
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Key Series

Gν(x , σ, θ, s,w) :=
∞∑

m=0

∞∑
n=0

(
Jν(4π

√
(m + σ)(n + θ)x)

(m + σ)s(n + θ)w

±
Jν(4π

√
(m + 1− σ)(n + θ)x)

(m + 1− σ)s(n + θ)w
±

Jν(4π
√

(m + σ)(n + 1− θ)x)

(m + σ)s(n + 1− θ)w

±
Jν(4π

√
(m + 1− σ)(n + 1− θ)x)

(m + 1− σ)s(n + 1− θ)w

)
, (17)
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Key Theorem

Theorem

Let Gν(x , σ, θ, s,w) be defined as above. Assume that
4 Re(s) > 1, and that 4 Re(w) > 1. Moreover, if x is an integer,
assume Re(s) + Re(w) > 25

26 , while if x is not an integer, assume
Re(s) + Re(w) > 5

6 . Then the double series Gν(x , σ, θ, s,w)
converges uniformly with respect to σ and θ in any compact subset
of (0, 1)2.
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Cosine-Cosine Sum

Theorem

Let I1(x) be defined by (8). If 0 < θ, σ < 1 and x > 0, then∑
nm≤x

′
cos(2πnθ) cos(2πmσ)

=
1

4
+

√
x

4∑
n,m≥0

{
I1(4π

√
(n + θ)(m + σ)x)√

(n + θ)(m + σ)
+

I1(4π
√

(n + 1− θ)(m + σ)x)√
(n + 1− θ)(m + σ)

+
I1(4π

√
(n + θ)(m + 1− σ)x)√

(n + θ)(m + 1− σ)
+

I1(4π
√

(n + 1− θ)(m + 1− σ)x)√
(n + 1− θ)(m + 1− σ)

}
.
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Further Motivation

It is sufficient to prove each of Ramanujan’s
formulas on page 335 in his Lost Notebook with one
order of summation
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Ramanujan’s Home, Kumbakonam
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Ramanujan’s Home, Porch
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Gratitude

I am very grateful
for the invitation.

Thank You
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