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Parity Bias in Partitions

Two Goals

1 Describe the results in:

B. Kim, E. Kim, and J. Lovejoy, Parity Bias in Partitions,
European. J. Combin. 89 (2020).

2 Discuss some conjectures reminiscent of conjectures of
Andrews on certain q-series in Ramanujan’s lost notebook.
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Introduction

Partition-theoretic generating functions are often related to
number theoretic objects, and in this case one can use number
theory to establish facts about partitions.

For example, let p(n) denote the number of partitions of n.

Ramanujan showed that

p(5n + 4) ≡ 0 (mod 5),

p(7n + 5) ≡ 0 (mod 7),

p(11n + 6) ≡ 0 (mod 11),

and wrote that “it appears that there are no equally simple
properties for any moduli involving primes other than these three.”
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Introduction (cont.)

Using the fact that ∑
n≥0

p(n)qn =
∏
n≥1

1

1− qn

is essentially a weakly holomorphic modular form, Ahlgren and
Boylan (2003) confirmed Ramanujan’s observation.
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Introduction (cont.)

For another example, let S(n) denote the number of partitions of n
into distinct parts with even rank minus the number of such
partitions with odd rank.

The rank of a partition is the largest part minus the number of
parts.

Andrews (1986) conjectured that

1) lim sup |S(n)| =∞,

2) S(n) = 0 for infinitely many n.
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Introduction (cont.)

Using the fact that

∑
n≥0

S(n)qn =
∑
n≥0

qn(n+1)/2∏n
k=1(1 + qk)

=
∑
n≥0
|j |≤n

(−1)n+jqn(3n+1)/2−j2
(1− q2n+1),

Andrews, Dyson, and Hickerson (1988) confirmed Andrews’
conjectures (and much more) using the arithmetic of the real
quadratic field Q(

√
6).
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Introduction (cont.)

And sometimes partition-theoretic generating functions don’t
appear to be related to number-theoretic objects.

For example, let qd(n) denote the number of partitions of n into
parts differing by at least d and let Qd(n) denote the number of
partitions of n into parts congruent to ±1 (mod d + 3).

Alder conjectured that for all positive d and n,

qd(n) ≥ Qd(n).
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Introduction (cont.)

The generating function∑
n≥0

Qd(n)qn =
∏
n≥0

1

(1− q(d+3)n+1)(1− q(d+3)n+(d+2))

is related to modular forms, but the generating function

∑
n≥0

qn+dn(n−1)/2∏n
k=1(1− qk)

is not, in general.
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Introduction (cont.)

The proof of Alder’s conjecture ultimately required a combinatorial
tour de force of Yee (2008) for the cases d ≥ 32 and some precise
asymptotic analysis of Afles, Jameson, and Lemke-Oliver for the
remaining cases.

The generating functions related to parity bias appear unrelated to
modular forms, mock modular forms, mixed mock modular forms,
false theta functions,...
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Parity Bias

Let po(n) denote the number of partitions of n with more odd
parts than even parts and let pe(n) denote the number of
partitions of n with more even parts than odd parts.

It turns out that po(n) > pe(n) except for n = 2.

We refer to this as parity bias – the tendency of partitions to have
more odd parts than even parts.
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Example: n = 6

partition pe(6)/po(6)

(6) pe(6)
(5, 1) po(6)
(4, 2) pe(6)

(4, 1, 1) po(6)
(3, 3) po(6)

(3, 2, 1) po(6)
(3, 1, 1, 1) po(6)
(2, 2, 2) pe(6)

(2, 2, 1, 1) –
(2, 1, 1, 1, 1) po(6)

(1, 1, 1, 1, 1, 1) po(6)

We have po(6) = 7 and pe(6) = 3.
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Results

Theorem 1

For all n 6= 2, we have po(n) > pe(n).

Theorem 2

For all positive integers n > 7,

2pe(n) < po(n) < 3pe(n).

Theorem 3

As n→∞,
po(n)

pe(n)
→ 1 +

√
2 ≈ 2.4142.
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Proofs

Theorem 1: Generating functions and q-series transformations.

Theorem 2: Combinatorial Mappings.

Theorem 3: Ingham’s Theorem.
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Notation

We use the usual q-series notation,

(a; q)n =
n−1∏
k=0

(1− aqk),

(a; q)∞ =
∞∏
k=0

(1− aqk)
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More on Theorem 1

Using standard combinatorial arguments, the term

qbn

(q2; q2)n

generates partitions into
at most n even parts, if b = 0,

exactly n odd parts, if b = 1,

exactly n even parts, if b = 2.
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More on Theorem 1 (cont.)

Therefore

Po(q) :=
∑
n≥0

po(n)qn

=
∑
n≥0

qn

(q2; q2)2
n

−
∑
n≥0

q3n

(q2; q2)2
n

= q + q2 + 2q3 + 3q4 + 4q5 + 7q6 + 9q7 + 14q8 + · · · ,

Pe(q) :=
∑
n≥0

pe(n)qn

=
1

(q; q)∞
−
∑
n≥0

qn

(q2; q2)2
n

= q2 + 2q4 + q5 + 3q6 + 3q7 + 6q8 + 7q9 + 10q10 + · · ·
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More on Theorem 1 (cont.)

Naively subtracting these generating functions doesn’t help.

But using classical q-series transformations, we obtain

Po(q) =
1

(q; q2)∞

∑
n≥1

q2n2−n

(q2; q2)n(q2; q2)n−1

and

Pe(q) =
1

(q; q2)∞

∑
n≥1

q2n2
(1− qn)

(q2; q2)2
n

.
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More on Theorem 1 (cont.)

Now subtracting gives

Po(q)− Pe(q) =
1

(q; q2)∞

∑
n≥1

q2n2−n(1− qn)

(q2; q2)2
n

.

Each summand clearly has non-negative coefficients.

For n = 2, the summand is

q6

(1− q2)(1− q4)2(1− q)(q3; q2)∞
,

which implies that for n ≥ 6 the coefficient of qn is positive.

The result follows.
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Remarks

Classical q-series transformations are still very useful!

B. Kim and E. Kim have obtained similar biases in other arithmetic
progressions (Biases in integer partitions, Bull. Aust. Math. Soc.,
to appear.)

The generating functions Po(q), Pe(q), and Po(q)− Pe(q) appear
unrelated to modular forms, mock modular forms, mixed mock
modular forms, false theta functions,...
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More on Theorem 2

Theorem 2 is shown in two steps.

1) 2pe(n) < po(n) except for n = 2, 4.

2) 3pe(n) > po(n) except for n = 1, 3, 5, 7.

Each part is done using an intricate injection.

We sketch the idea for the first part.
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More on Theorem 2

Let A and B be sets of partitions.

Recall that a generalized Frobenius symbol of type (A,B) and
weight n is a two-rowed array of the form(

a1 a2 · · · ak
b1 b2 · · · bk

)
,

where the top row (a1, a2, . . . , ak) is a partition in the set A, the
bottom row (b1, b2, . . . , bk) is a partition in the set B, and
n =

∑k
i=1(ai + bi + 1).
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More on Theorem 2 (cont.)

Let FA,B denote the set of Frobenius symbols of type (A,B) and
let FA,B(n) to denote the number of Frobenius symbols in FA,B

having weight n.

Generalized Frobenius symbols can be used to represent a number
of types of well-known partitions.

For example, let D be the set of partitions into distinct
non-negative parts. Then

p(n) = FD,D(n).

For another example, let O be the set of overpartitions into
non-negative parts. Then

p(n) = FD,O(n),
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More on Theorem 2 (cont.)

Let De denote the set of partitions into distinct non-negative even
parts.

Let A be the set of partition pairs (π, λ), where π is a partition
into distinct parts and λ is a Frobenius symbol in FDe ,De such that
0 always occurs in the top row.

Let B be the set of partition pairs (π, λ) where λ is a Frobenius
symbol in FDe ,De such that 0 is always a part of the top row, the
largest part on the top may be overlined, and π is a partition into
distinct parts not equal to `(λ).

Here `(λ) denotes the number of columns in λ.
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More on Theorem 2 (cont.)

It turns out that∑
(π,λ)∈B

q|π|+|λ| −
∑

(π,λ)∈A

q|π|+|λ|

= 2(−q)∞
∑
n≥1

q2n2−n(1− qn)

(q2; q2)2
n

− (−q)∞
∑
n≥1

q2n2−n

(q2; q2)n(q2; q2)n−1

= 2 (Po(q)− Pe(q))− Po(q)

= Po(q)− 2Pe(q)

= q − q2 + 2q3 − q4 + 2q5 + q6 + · · ·+ 82q20 + 107q21 + · · ·

To prove the desired inequality, we give an injection φ : An → Bn
for n 6= 2, 4, where the subscript n means |π|+ |λ| = n.
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More on Theorem 2 (cont.)

Suppose that (π, λ) ∈ An. Define φ((π, λ)) = (π′, λ′) ∈ Bn as
follows:

Case 1: `(λ) is not a part of π. Then (π′, λ′) = (π, λ).

Case 2: `(λ) is a part of π and π has at least two parts. Then λ′ is
the Frobenius symbol obtained by overlining the top leftmost part
of λ and π′ is constructed by deleting the part `(λ) from the
partition π and adding `(λ) to the largest part among the
remaining parts of π.

e.g .

(
(3, 2, 1),

(
4 0
6 2

))
→
(

(5, 1),

(
4 0
6 2

))
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More on Theorem 2 (cont.)

Case 3: π = (`(λ)) and `(λ) > 1.

(i) If `(λ) is even, λ′ is obtained by adding `(λ) to the top
leftmost part of λ after overlining the top leftmost entry, and
π′ = ∅,

(ii) if `(λ) is odd, λ′ is obtained by adding `(λ)− 1 to the largest
part of the top row of λ after overlining the top leftmost
entry, and π′ = (1).

Case 4: π = (`(λ)) and `(λ) = 1. In this case, for k > 1 we define

φ((π, λ)) = φ

((
(1),

(
0

2k

)))
= (π′, λ′) =

(
∅,
(

2 0
2k − 2 0

))



Parity Bias in Partitions

We then observe that:

1) φ is defined on all pairs (π, λ) ∈ A except for k = 0, 1 in Case
4, corresponding to n = 2, 4.

2) φ is an injection. This gives the inequality po(n) ≥ 2pe(n) for
n 6= 2, 4.

3) For k ≥ 2, the pairs(
(2, 1),

(
2k 2 0
4 2 0

))
,

(
(2),

(
2k 2 0
4 2 0

))
∈ B

are not in φ(A). These have weight n = 2k + 14 and 2k + 13,
respectively, giving strict inequality for n ≥ 17.
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Remarks

The injection for the second inequality 3pe(n) > po(n) is much
more involved. (Multiple cases, subcases, and sub-subcases.)

We also have a q-series proof for po(n) > 2pe(n).

Note that we used the transformed generating functions and the
corresponding pairs of partitions. Is it possible to argue directly
using the partitions counted by po(n) and pe(n)?
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More on Theorem 3

Some data:

n po(n)/p(n) pe(n)/p(n) po(n)/pe(n)

100 0.6795 0.2764 2.4588
500 0.6946 0.2854 2.4339

1500 0.6998 0.2885 2.4255
2500 0.7015 0.2895 2.4229
5000 0.7031 0.2905 2.4204

10000 0.7043 0.2912 2.4186

We show that

po(n) ∼ 1√
2
p(n) ≈ 0.7071p(n)

pe(n) ∼
√

2− 1√
2

p(n) ≈ 0.2929p(n).
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More on Theorem 3

We use classical asymptotic analysis (Ingham’s Theorem).

First, we show that po(n) and pe(n) are weakly increasing
sequences. (The latter holds for n > 5.)

We have

(1− q)Po(q) =
1

(q3; q2)∞

∑
n≥1

q2n2−n

(q2; q2)n(q2; q2)n−1
,

(1− q)Pe(q) =
1

(q3; q2)∞

∑
n≥1

q2n2
(1− qn)

(q2; q2)2
n

.
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More on Theorem 3 (cont.)

The first series obviously has non-negative coefficients.

For n ≥ 2 the nth summand of the second series has non-negative
coefficients.

For n = 1 we use a q-series identity and obtain

q2(1− q)2

(1− q2)2(q; q2)∞
= −q3 − q5 +

q2(1 + q2)

1− q2

+
q2

(1− q2)

∑
n≥2

(−q2)n−1

(q2)n−1
(1 + q2n+1)q(3n2+n)/2.
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More on Theorem 3 (cont.)

Next we study Po(e−z) and Pe(e−z) as z → 0.

We show that

Po(e−z) ∼ 1

2

√
z

π
exp

(
π2

6z

)
,

Pe(e−z) ∼
(

1√
2
− 1

2

)√
z

π
exp

(
π2

6z

)
,

which by Ingham’s theorem gives

po(n) ∼ 1

4
√

6n
exp

(
π

√
2n

3

)
∼ 1√

2
p(n),

pe(n) ∼
√

2− 1

4
√

6n
exp

(
π

√
2n

3

)
∼
√

2− 1√
2

p(n).
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More on Theorem 3 (cont.)

To prove the asymptotics for Po(e−z) and Pe(e−z), we use the
fact that Po(q) and Pe(q) can be written in terms of

Gb(q) =
1

(q; q2)∞

∑
n≥0

q2n2+bn

(q2; q2)2
n

for b = 0, 1,−1, and that Gb(q) can be expressed as a constant
term.

For example, using the usual Jacobi theta function θ(x ; q),

G1(q) = [x0]

(
(−x ; q)∞

(q)∞(−x ; q2)2
∞
θ(q; x/q)

)

We then apply facts about theta functions and the quantum
dilogarithm.
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Further work and conjectures

It is natural to wonder about parity bias in other types of partitions.

For example, if do(n) (resp. de(n)) denotes the number of
partitions into distinct parts having more odd (resp. even) parts
than even (resp. odd) parts, then it appears that

do(n) > de(n)

for n > 19. (This has been checked up to n = 2000.)

Solved by Dastidar, Bannerjee, Battacharjee (announced).

One can also ask about other kinds of biases...
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Further work and conjectures (cont.)

Define pu(n) (resp. po(n)) to be the number of overpartitions of n
with more non-overlined (resp. overlined) parts than overlined
(resp. non-overlined) parts.

Theorem 4

The difference pu(n)− po(n) is equal to the number of
overpartitions of n where the number of non-overlined parts is at
least two more than the number of overlined parts.

For example, there are 8 overpartitions of 3,

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

Here pu(3) = 4, po(3) = 2, and thus pu(3)− po(3) = 2, which
corresponds to the overpartitions 2 + 1 and 1 + 1 + 1.
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Further work and conjectures (cont.)

It is natural to consider weighted versions of partition generating
functions.

Think of:

f (q) =
∑
n≥0

qn
2

(−q; q)2
n

,

f (q) =
∑
n≥0

qn(n+1)/2(−1; q)n
(−q; q)2

n

,

σ(q) =
∑
n≥0

qn(n+1)/2

(−q; q)n
.
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Further work and conjectures (cont.)

Consider the series∑
n≥1

a(n)qn =
∑
n≥1

qn(1 + q2n)

(−q2; q2)2
n

.

It turns out that a(n) is the number of partitions λ counted by
po(n), each weighted by (−1)w , where

w =
1

2
(the largest even part of λ + the largest odd part of λ− 1).
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Further work and conjectures (cont.)

It appears that:

– a(n) = 0 if and only if

n ∈ {3, 5, 9, 17, 20, 23, 24, 26, 28, 51, 125, 233}.

– a(n) has a regular sign pattern +,+,−,− with infinitely many
(sporadic) exceptions.

We have no proof of this.
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Further work and conjectures (cont.)

In Questions and Conjectures in Partition Theory, Amer. Math.
Monthly 93 (1986), 708–711, George Andrews observed that some
series in Ramanujan’s lost notebook also had coefficients with “a
lengthy sign change pattern that alters fairly infrequently” and
made some precise conjectures about this.

For example, ∑
n≥0

qn(n+1)/2

(−q2; q2)n

What is the explanation for these “almost regular” sign patterns?
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Thanks!


