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Overview

1 The Riemann zeta function and the explicit formula

2 A new Fourier duality relation for zeros of ⇣(s)

3 Reconstruction problem for the Fourier transform

4 Proof outline
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The Riemann zeta function

Definition

Additive definition:

⇣(s) =
1X

n=1

1

ns
, Re s > 1 .

Multiplicative definition:

⇣(s) =
Y

p

1

1� p�s
, Re s > 1 .

The additive definition shows that ⇣(s) continues analytically to a meromorphic
function in C with a simple pole at s = 1.
The multiplicative definition shows that ⇣(s) 6= 0 for Re s > 1.
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Analytic continuation

From �(s) =
R1
0

e
�x

x
s�1

dx and 1

ex�1
=

P
n�1

e
�nx one gets

�(s)⇣(s) =

Z 1

0

x
s�1

ex � 1
dx , Re s > 1

This leads to analytic continuation by the following property of the Mellin transform

Proposition

Let f : (0,1) ! C be a continuous rapidly decaying function such that for some

cj ,↵j 2 C with Re↵j ! +1 one has

f (x) ⇠ c1x
↵1 + c2x

↵2 + . . . , x ! 0.

Then F (s) = M(f )(s) :=
R1
0

f (x)x s�1
dx continues analytically to a meromorphic

function in C with simple poles at s = �↵j and Ress=�↵j F (s) = cj .
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Analytic continuation

Alternatively, one can write

�R(s)⇣(s) =

Z 1

0

!(x)x s/2�1
dx

Here

�R(s) = ⇡�s/2�(s/2) , !(x) =
1X

n=1

e
�⇡n2x .

The key observation is that

!(x)� x
�1/2!(1/x) = (x�1/2

� 1)/2

which implies
�R(1� s)⇣(1� s) = �R(s)⇣(s)
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Explicit formula

Note that the Euler product ⇣(s) =
Q

p(1� p
�s)�1 implies that

�
⇣ 0(s)

⇣(s)
=

X

n�1

⇤(n)

ns

where ⇤(n) is the von Mangoldt function

⇤(n) =

(
log p , n = p

k

0 , otherwise

The only poles of ⇣ 0(s)/⇣(s) in �" < Re s < 1 + " are at s = 0, 1, and at s = ⇢ for
each nontrivial zero ⇢ of ⇣(s). The residue at s = ⇢ is m⇢, the multiplicity of ⇢.
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Explicit formula

Note that the functional equation implies

⇣ 0(s)

⇣(s)
+

⇣ 0(1� s)

⇣(1� s)
= �

�0
R
(s)

�R(s)
�
�0
R
(1� s)

�R(1� s)

Let h be an analytic function in the strip �2" < Re s < 1 + 2" satisfying
h(z) = h(1� z). Then we can calculate

I =
1

2⇡i

Z
1+"+i1

1+"�i1
h(s)

⇣⇣ 0(s)
⇣(s)

�
⇣ 0(1� s)

⇣(1� s)

⌘
ds

in two di↵erent ways:

I =
1

2⇡i

Z
1+"+i1

1+"�i1
h(s)

⇣ 0(s)

⇣(s)
ds �

1

2⇡i

Z �"+i1

�"�i1
h(s)

⇣ 0(s)

⇣(s)
ds

I =
1

2⇡i

Z
1+"+i1

1+"�i1
h(s)

⇣
2
⇣ 0(s)

⇣(s)
+
�0
R
(s)

�R(s)
+
�0
R
(1� s)

�R(1� s)

⌘
ds
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Explicit formula

The first expression can be evaluated using Cauchy’s theorem, and the second using
the Mellin inversion formula

M
�1(h)(x) =

1

2⇡i

Z c+i1

c�i1
h(s)x�s

ds

Theorem (Riemann-Weil explicit formula)

Let f (z) be an even function, analytic in S1/2+" = {z : | Im z | < 1/2 + "} and suppose

that |f (x + iy)| ⌧ (1 + |x |)�1�"
. Then

f ( i
2
) +

1

2⇡

Z

R

f (t) (t)dt =
X

⇣(⇢)=0

Im ⇢>0

m⇢f

⇣⇢� 1/2

i

⌘
+

1

2⇡

X

n�1

⇤(n)

n1/2
bf
⇣ log n

2⇡

⌘

Here  (t) =
�
0
R(1/2+it)

�R(1/2+it) , m⇢ is the multiplicity of ⇢, and bf (⇠) =
R
R
f (x)e�2⇡i⇠x

dx .
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Explicit formula

One may view the explicit formula as an expression of the linear functional

f 7! f ( i
2
) +

1

2⇡

Z

R

f (t) (t)dt

as a linear combination of

f 7! f

⇣⇢� 1/2

i

⌘
(⇣(⇢) = 0) , f 7! bf

⇣ log n
2⇡

⌘
(n = p

k)

Roughly speaking, our main result is that essentially any continuous linear functional
can be written as a linear combination of

f 7! f

⇣⇢� 1/2

i

⌘
, f 7! bf

⇣ log n
4⇡

⌘
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Interpolation from zeros of ⇣(s)

Let H1 be the space of f (z) analytic in the strip | Im z | < 1/2 + " such that

sup
|y |<1/2+"

Z 1

�1
|f (x + iy)|(1 + |x |)dx < 1

Theorem (Bondarenko-R.-Seip, 2020)

There exist two sequences of rapidly decaying even entire functions Un(z), n = 1, 2, ...,
and V⇢,j(z), 0  j < m⇢, with ⇢ ranging over the nontrivial zeros of ⇣(s) such that for

every even function f in H1 and z with | Im z | < 1/2

f (z) =
1X

n=1

bf
✓
log n

4⇡

◆
Un(z) + lim

m!1

X

0<�Tm

m⇢�1X

j=0

f
(j)

✓
⇢� 1/2

i

◆
V⇢,j(z)

for some universal sequence of positive numbers Tm ! 1.
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Interpolation from zeros of ⇣(s)

Corollary

If an even function f 2 H1 satisfies

f
(j)
⇣⇢� 1/2

i

⌘
= 0 , 0  j < m⇢

bf
⇣ log n

4⇡

⌘
= 0 , n � 1

then f must vanish identically.

This is optimal, since by construction Un and V⇢,j satisfy

U
(j)
n

⇣
⇢�1/2

i

⌘
= 0, bUn

⇣
log n0

4⇡

⌘
= �n,n0

V
(j 0)
⇢,j

⇣
⇢0�1/2

i

⌘
= �(⇢,j),(⇢0,j 0), bV⇢,j

⇣
log n
4⇡

⌘
= 0
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Reconstruction problem for the Fourier transform

We use the following normalization for the Fourier transform

bf (⇠) =
Z

R

f (x)e�2⇡i⇠x
dx

Question

How to recover a nice function f : R ! C from partial information about f and bf ?

Specifically, given closed sets A,B ⇢ R, how to recover f from f 7! (f |A, bf |B)?
If f is uniquely determined by (f |A, bf |B), (A,B) is a (Fourier) uniqueness pair

We call a uniqueness pair tight if one cannot replace A, B by proper subsets

Finally, in an ideal situation we may ask whether there is an explicit formula that
recovers f from f |A and bf |B
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Chebotarev-Tao theorem

Exmaple. Let p be a prime and for f : Z/pZ ! C define

bf (⇠) = 1
p
p

X

x (mod p)

f (x)e�2⇡ix⇠/p

Theorem (Tao, 2005)

A nonzero function f : Z/pZ ! C satisfies |S(f )|+ |S(bf )| � p + 1.
Here S(g) denotes the support of a function g : Z/pZ ! C.

This result follows from an old theorem of Chebotarev from 1926 that
all minors of the matrix (e2⇡ikl/p)k,l are nonzero.

Corollary

If A,B ⇢ Z/pZ are such that |A|+ |B | = p, then (A,B) is a tight uniqueness pair.
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Whittaker-Shannon interpolation formula

Example. If A = {x : |x | � 1/2}, B = Z, then (A,B) is a uniqueness pair.

Proof.

This follows from the Poisson summation formula

f (x) =
X

m2Z

bf (m)e2⇡imx
�

X

n 6=0

f (x + n)

If f ||x |�1/2 = 0, taking the Fourier transform gives the Whittaker-Shannon formula:

bf (x) =
X

m2Z

bf (m)
sin(⇡(x �m))

⇡(x �m)
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Interpolation from ±
p
n

Example. A = {±
p
n}n�0, B = Ar {0}, is a uniqueness pair for even functions.

Theorem (R.-Viazovska, 2017)

There exists a sequence of even Schwartz functions an : R ! R with the property that

for every even Schwartz function f : R ! R we have

f (x) =
1X

n=0

f (
p
n)an(x) +

1X

n=0

bf (
p
n)ban(x) .

The value bf (0) can be removed from RHS using
P

n2Z f (n) =
P

n2Z
bf (n).

Tightness follows from an(
p
m) = �m,n, ban(

p
m) = 0 for n,m � 1.

There is an analogous statement for odd functions that also involves f 0(0) and bf 0(0).
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Application: Universal optimality of lattices

Theorem (Cohn-Kumar-Miller-R.-Viazovska, 2019)

For d 2 {8, 24} there exist two sequences of radial Schwartz functions an, bn 2 S(Rd),
n � 0 such that for any radial Schwartz function f we have

f (x) =
X

n�n0

an(x)f (
p

2n)+
X

n�n0

bn(x)f
0(
p

2n)+
X

n�n0

ban(x)bf (
p

2n)+
X

n�n0

bbn(x)bf 0(
p

2n)

Here n0 = 1 for d = 8 and n0 = 2 for d = 24.

This formula has been used to prove the following result.

Theorem (Cohn-Kumar-Miller-R.-Viazovska, 2019)

The E8 and Leech lattices are universally optimal.
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Uniqueness pairs with A = {±cn↵}, B = {±dn�}

Recent progress on uniqueness pairs of the form A = {±cn
↵
}, B = {±dn

�
}:

Ramos and Sousa (2019) have shown that if ↵ and � belong to a certain region
⌦ ⇢ {↵,� � 0,↵+ � < 1}, then (A,B) is a uniqueness pair

Nazarov and Sodin have recently (May, 2020) showed that

↵+ � < 1 ) (A,B) is a uniqueness pair,

↵+ � > 1 ) (A,B) is not a uniqueness pair.

Moreover, for ↵+ � = 1 they have showed that (A,B) is a uniqueness pair if
2cd < ↵�↵��� , and it is not a uniqueness pair if 2cd > ↵�↵��� .

Conjecture

If 2cd = ↵�↵���
, then A = {±cn

↵
}n�0, B = {±dn

�
}n�0 is a uniqueness pair.
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Uniqueness pair with zeros of ⇣(s)

Finally, one can interpret the interpolation formula

f (z) =
1X

n=1

bf
✓
log n

4⇡

◆
Un(z) + lim

k!1

X

0<�Tk

m⇢�1X

j=0

f
(j)

✓
⇢� 1/2

i

◆
V⇢,j(z) (*)

as showing that A = {
⇢�1/2

i }⇢:⇣(⇢)=0, B = {±
log n
4⇡ } is a uniqueness pair for an

appropriate space of functions.

A caveat: A ⇢ R is equivalent to RH, and to get rid of derivatives, one needs m⇢ = 1

Let us now outline the proof of (*).
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Hamburger’s theorem

“Riemann’s zeta function is uniquely determined by its functional equation”

Theorem (Hamburger)

If ' : C ! C is a meromorhic function such that

(i) for some polynomial P , the function P(s)'(s) is entire of finite genus

(ii) �R(s)'(s) = �R(1� s)'(1� s)

(iii) '(s) =
P

n�1
ann

�s
and the series converges in at least one point

Then '(s) is a multiple of ⇣(s).
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Hecke’s version of Hamburger’s theorem

(iii)’ '(s) =
P

n�1
ann

�s/2, but only a simple pole at s = 1 is allowed

Proof sketch.

Applying inverse Mellin transform to �R(s)'(s) gives f (t) =
P

n�1
ane

�⇡nt with

f (t)� t
�1/2

f (1/t) = c � ct
�1/2 .

Then g(⌧) = f (⌧/i)� c is a holomorphic function on the upper half-plane H satisfying

g(⌧ + 2)� g(⌧) = 0, g(⌧)� (⌧/i)�1/2
g(�1/⌧) = 0 .

Thus g is a modular form of weight 1/2 for the theta group, and one can show that
this forces g(⌧) = �c✓(⌧), where ✓(⌧) =

P
n2Z e

⇡in2⌧ is the Jacobi theta function.
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Dirichlet series and summation formulae

Let L1(s) =
P

n
an
�s
n
and L2(s) =

P
n

bn
µs
n
be two general Dirichlet series such that:

they extend meromorphically to C with simple poles in the strip 0  Re(z)  k

they grow at most polynomially in vertical strips and satisfy

L1(k � s) = L2(s)

Proposition

For all nice f satisfying f (k � s) = f (s) we have

X

⇢

f (⇢) ress=⇢ L1(s) =
X

n�0

anM
�1

f (�n)�
X

n�0

bnM
�1

f (µn) .

Here M
�1(f )(x) = 1

2⇡i

R c+i1
c�i1 f (s)x�s

ds is the inverse Mellin transform.

21 / 28



Dirichlet series with a prescribed pole

Our result implies the existence of

As(w) =
X

n�1

↵n(s)

nw/2

such that
�R(w)As(w) = ��R(1� w)As(1� w)

and �R(w)As(w) has poles only at 0, 1 and s, 1� s.

Then the summation formula corresponding to Dirichlet series

As(w)

⇣(w)
= �

As(1� w)

⇣(1� w)

gives our claim for all su�ciently nice functions f .

To get the claim for f 2 H1 one needs good estimates for various sums involving ↵n(s).
22 / 28



Explicit formulas for the basis functions

In terms of ↵n(s) the basis functions Un are given by

Un

⇣
s � 1/2

i

⌘
=

1

2
⇣⇤(s)

X

d2|n

µ(d)↵n/d2(s)

where ⇣⇤(s) = �R(s)⇣(s).

Assuming that m⇢ = 1 we also have

V⇢,0

⇣
s � 1/2

i

⌘
= C⇢⇣

⇤(s)As(⇢) , C⇢ =
�R(⇢)

(⇣⇤)0(⇢)
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Modular integrals for the theta group

Applying inverse Mellin transform to As(w) we get an equivalent problem: construct

Fs(⌧) =
X

n�0

↵n(s)e
⇡in⌧ , Im ⌧ > 0

such that
Fs(⌧) + (⌧/i)�1/2

Fs(�1/⌧) = (⌧/i)�s/2 + (⌧/i)�(1�s)/2 .

In other words we are looking for a holomorphic function Fs : H ! C satisfying
(
Fs(⌧ + 2)� Fs(⌧) = 0

Fs(⌧) + (⌧/i)�1/2
Fs(�1/⌧) = (⌧/i)�s/2 + (⌧/i)�(1�s)/2

that does not grow quickly near the boundary of H.
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Modular integrals for the theta group

Solutions to the homogeneous system
(
f (⌧ + 2)� f (⌧) = 0

f (⌧) + (⌧/i)�1/2
f (�1/⌧) = 0

are (under suitable growth conditions) modular forms of weight 1/2 for the group �✓
generated by ⌧ 7! ⌧ + 2 and ⌧ 7! �1/⌧ .

The solution Fs(⌧) to the inhomogeneous system can be written down explicitly (the
idea comes from a paper by Duke, Imamoglu, and Toth on cycle integrals of the
j-invariant): for ⌧ in the fundamental domain one defines

Fs(⌧) =
1

2

Z
1

�1

K (⌧, z)(z/i)�s/2
dz

where K (⌧, z) is a Green-type kernel for the group �✓. For general Im ⌧ > 0 we can
continue Fs(⌧) analytically by iterating the functional equations.
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Reformulation as a boundary value problem

i

�1 1

0 64

C

The functional equation

Fs(⌧) + (⌧/i)�1/2
Fs(�1/⌧) = (⌧/i)�s/2 + (⌧/i)�(1�s)/2

can be rewritten as a jump condition for a holomorphic function on Cr [0, 64] by
applying a conformal map as above.

The contour integral for Fs(⌧) then follows from Sokhotski-Plemelj formula.
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Concluding remarks

The proof is relatively flexible and applies to many other L-functions.

L(�, s) for Dirichlet characters �, with ±
log n
4⇡ replaced by ±

log(qn)
4⇡

⇣K (s) for imaginary quadratic fields, with ±
log n
4⇡ replaced by ±

log(2D1/2n)
2⇡

L(f , s) for a cusp form f of weight k and level N, ± log n
4⇡ 7! ±

log(2N1/2n)
2⇡

For L-functions whose functional equation involves a product of more than 2 gamma
factors our approach does not give tight uniqueness pairs.

Since we use only the functional equation, we also get interpolation formulas from
Dirichlet series that do not satisfy RH.
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THANK YOU!
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