Littlewood-Richsrdson cone for symmetrizable Kac-Moody algebras

Let \mathfrak{g} be a symmetrizable Kac-Moody Lie algebra with the standard Cartan subalgebra \mathfrak{h} . Let $P_+ \subset \mathfrak{h}^*$ be the set of dominant integral weights. For $\lambda \in P_+$, let $L(\lambda)$ be the integrable, highest weight (irreducible) representation of \mathfrak{g} with highest weight λ . For a positive integer s, define the saturated tensor semigroup as

$$\Gamma_s := (\lambda_1, \dots, \lambda_s, \mu) \in P_+^{s+1} : \exists N > 1 \text{ with } L(N\mu) \subset L(N\lambda_1) \otimes \dots \otimes L(N\lambda_s).$$

Let $\Gamma_s(\mathbb{Q})$ be the rational cone generated by Γ_s . If \mathfrak{g} is finite dimensional, $\Gamma_s(\mathbb{Q})$ is a polyhedral convex cone. Significant results were obtained for $\Gamma_s(\mathbb{Q})$ starting with the work of Weyl (1912), Horn (1962), Klyachko (1998), Knutson-Tao (1999), Berenstein-Sjamaar (2000), Belkale (2001), Kapovich-Leeb-Millson (2009) culminating in the work of Belkale-Kumar (2006) and Ressayre (2010) which produced an irredundant set of inequalities (for any finite dimensional \mathfrak{g}). In general, $\Gamma_s(\mathbb{Q})$ is neither polyhedral nor closed. The aim of these talks is to study $\Gamma_s(\mathbb{Q})$ in the infinite dimensional symmetrizable Kac-Moody case. In these talks, following a work of Brown-Kumar, we will give a set of necessary linear inequalities satisfied by $\Gamma_s(\mathbb{Q})$. They further conjectured that this set of inequalities should be sufficient. Now, Ressayre proved that indeed this set of inequalities is sufficient when \mathfrak{g} is untwisted affine. He also obtained an explicit saturation factor for the semigroup Γ_2 .

Even though we will try to make these lectures fairly self-contained, but some basic knowledge of representation theory of Kac-Moody Lie algebras as well as Geometric Invariant Theory will be helpful.