tensor

tensor(M,N) -- tensor product of rings or monoids.

This method allows all of the options available for monoids, see monoid for details. This routine essentially combines the variables of M and N into one monoid.

For rings, the rings should be quotient rings of polynomial rings over the same base ring.

Here is an example with monoids.

i1 : M = monoid[a..d, MonomialOrder => Eliminate 1]

o1 = M

o1 : GeneralOrderedMonoid
i2 : N = monoid[e,f,g, Degrees => {1,2,3}]

o2 = N

o2 : GeneralOrderedMonoid
i3 : P = tensor(M,N,MonomialOrder => GRevLex)

o3 = P

o3 : GeneralOrderedMonoid
i4 : describe P

o4 = [a,b,c,d,e,f,g,Degrees => {{1}, {1}, {1}, {1}, {1}, {2}, {3}},MonomialOrder => GRevLex]

o4 : String
i5 : tensor(M,M,Variables => {t_0 .. t_7}, MonomialOrder => ProductOrder{4,4})

o5 = [t ,t ,t ,t ,t ,t ,t ,t ,MonomialOrder => ProductOrder {4, 4}]
       0  1  2  3  4  5  6  7

o5 : GeneralOrderedMonoid
i6 : describe oo

o6 = [t_0,t_1,t_2,t_3,t_4,t_5,t_6,t_7,MonomialOrder => new ProductOrder from {4, 4}]

o6 : String

Here is a similar example with rings.

i7 : tensor(ZZ/101[x,y], ZZ/101[r,s], MonomialOrder => Eliminate 2)

      ZZ
o7 = ---[x,y,r,s,MonomialOrder => Eliminate 2]
     101

o7 : PolynomialRing

See also **.


topindexpreviousupnext