i1 : R = ZZ/101[x,y,z]
o1 = R
o1 : PolynomialRing |
i2 : m = image vars R
o2 = image {0} | x y z |
1
o2 : R - module, submodule of R |
i3 : m2 = image symmetricPower(2,vars R)
o3 = image {0} | x2 xy xz y2 yz z2 |
1
o3 : R - module, submodule of R |
i4 : M = R^1/m2
o4 = cokernel {0} | x2 xy xz y2 yz z2 |
1
o4 : R - module, quotient of R |
i5 : N = R^1/m
o5 = cokernel {0} | x y z |
1
o5 : R - module, quotient of R |
i6 : C = cone extend(resolution N,resolution M,id_(R^1))
1 4 9 9 3
o6 = R <-- R <-- R <-- R <-- R
0 1 2 3 4
o6 : ChainComplex |