The field k is the coefficient ring of the ring of M. The degree i may be a multi-degree, represented as a list of integers.
Alternatively, if the coefficient ring of the ring of M is ZZ, then the basis returned is a basis only modulo torsion.
i1 : R = ZZ/101[a..c]; |
i2 : f = basis(2,R) |
i3 : f ** R |
i4 : basis(2, ideal(a,b,c)/ideal(a^2,b^2,c^2)) |
i5 : basis(R/(a^2-a*b, b^2-c^2, b*c)) |
i6 : S = ZZ/101[x,y,z,Degrees=>{{1,3},{1,4},{1,-1}}] |
i7 : basis({7,24}, S) |
i8 : R = ZZ/101[a..d] |
i9 : f = basis(3, ideal(a^2, b^2)) |
i10 : target f |
i11 : super f |