Fabio Toninelli (U Lyon)

The domino shuffling algorithm and anisotropic KPZ stochastic growth

The domino-shuffling algorithm can be seen as a stochastic process describing the irreversible growth of a (2+1)-dimensional discrete interface. Its stationary speed of growth $v(\rho)$ depends on the average interface slope ρ , as well as on the edge weights w, that are assumed to be periodic in space. We show that this growth model belongs to the Anisotropic KPZ class: one has det[D^2 $v(\rho)$]<0 and the height fluctuations grow at most logarithmically in time. Moreover, we prove that $Dv(\rho)$ is discontinuous at each of the (finitely many) smooth (or "gaseous") slopes ρ ; at these slopes, fluctuations do not diverge as time grows. The proof avoids the explicit computation of $v(\rho)$, very hard to achieve for general weights, and goes instead through a relation between the speed of growth and the limit shape of domino tilings of the Aztec diamond. Joint work with Sunil Chhita (Durham).