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Optimal Design

Motivating example: drug development (clinical phase)

pre-clinic clinic market

phase I phase II phase III

�
�

�
��	

first experiments
with humans

?

efficacy,
dose finding,

safety ...

@
@
@
@@R

(large) clinical trials
(proof of efficacy,

side effects)

Phase I: 20− 40 patients

Phase II: 100− 300 patients

Phase III: 1000− 10000 patients

What dose level should be used in the the phase III trial?
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Optimal Design

Motivating Example: drug development

Confirmatory trial (phase II) to determine the appropriate target dose

Main goal: estimation of the minimum effective dose level (target dose),
which produces at least the clinically relevant effect

Mathematical (extremely simplified) description of the dose response
relationship (Michaelis Menten model)
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Problem: at which dose levels should patients be treated in order to
estimate the MED most efficiently?
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Optimal Design

(Nonlinear) regression model

Y = η(x , θ) + σ(x , θ)ε, x ∈ X

X denotes the design space

ε random error, E [ε] = 0 , E [ε2] = 1

m independent observations Y1, . . . ,Ym at experimental conditions
x1, . . . , xm to estimate the vector of parameters θ

Expectation of Y (at experimental condition x) is given by η(x , θ)

Variance of Y (at experimental condition x) is given by σ2(x , θ)

Example: Michaelis Menten model

η(x , θ) =
θ1x

x + θ2
, σ(x , θ) =

θ1x

x + θ2
, x ∈ X = (0,∞)

5 / 54



Optimal Design

Problem: At which points xi should we take observations ?

Definition: An approximate design ξ is a probability measure on the
design space X .

Example:

ξ =

(
25 80 150
1
3

1
3

1
3

)

⇒ 1/3 of the total observations at each point 25, 80 and 150

m = 30 → 10, 10, 10

m = 40 → 13, 14, 13
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Optimal Design

Measuring the quality of designs

Weighted least squares estimator: θ̂

⇒ Cov(θ̂) ∼ 1

m
M−1(ξ)

where

M(ξ) =

∫
X

1

σ2(x , θ)

(
∂η(x , θ)

∂θ

)T
∂η(x , θ)

∂θ

+
1

2σ4(x , θ)

(
∂σ2(x , θ)

∂θ

)T
∂σ2(x , θ)

∂θ
dξ(x)

denotes the information matrix of the design ξ (this measure refers to the
normality assumption).

Goal:

Maximize M(ξ) w.r.t. the choice of the design ξ (impossible!!)
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Optimal Design

Optimality criteria

Only a partial ordering in the space of nonnegative definite matrices

Maximize real valued (statistical meaningful) functions of M(ξ) →
optimality criteria

The application determines the criterion

c-optimality (MED-estimation)

ξ∗ = arg max
ξ

(cTM−1(ξ)c)−1

where c is a vector determined by the regression model.
D-optimality (precise estimation of all parameters)

ξ∗ = arg max
ξ
|M(ξ)|

In this talk we will only consider D-optimal designs and polynomial
models!
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Optimal Design

Classical (weigthed) polynomial regression model

Polynomial regression model [θ = (θ0, . . . , θn−1)T , x ∈ (−∞,∞)]

η(x , θ) =
n−1∑
j=0

θjx
j

σ2(x , θ) = ex2

Example: n = 2, linear regression model (with heteroscedastic error)

∂

∂θ
η(x , θ) = (1, x , . . . , xn−1)T ,

∂

∂θ
σ2(x , θ) = 0
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Optimal Design

D-optimal design problem (weighted polynomial regression)

A D-optimal design maximizes the determinant

|M(ξ)| =
∣∣∣(∫

R

x i+je−x2
dξ(x)

)
i ,j=0,...,n−1

∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∫
R
e−x2

dξ(x)
∫
R
xe−x2

dξ(x) . . .
∫
R
xn−1e−x2

dξ(x)∫
R
xe−x2

dξ(x)
∫
R
x2e−x2

dξ(x) . . .
∫
R
xne−x2

dξ(x)

...
. . .

. . .
...∫

R
xn−1e−x2

dξ(x)
∫
R
x2e−x2

dξ(x) . . .
∫
R
x2n−2e−x2

dξ(x)

∣∣∣∣∣∣∣∣∣∣∣∣∣
in the class of all probability measures of R.
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Optimal Design

D-optimal design problem

Theorem 1: The D-optimal design ξ∗ is a uniform distribution on the set{
z | Hn(z) = 0

}
where Hn denotes the n-th Hermite polynomial, orthogonal with respect to
the measure

e−x2
dx

Two Proofs:

Equivalence theorems (from design theory) and second order
differential equations (Stieltjes)

Moment theory
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Optimal Design

Proof; Step 1 (idea): identification of the weights

Equivalence theorem for D-optimality (Kiefer and Wolfowitz, 1960):
ξ∗ is D-optimal if and only if

∀x ∈ R e−x2

(1, x , . . . , xn−1)M−1(ξ∗)(1, x , . . . , xn−1)T ≤ n

Moreover, there is equality for all support points of the D-optimal design.

Example: weighted polynomial regression of degree 7 (n = 8)

D-optimal design (solid curve)
Equidistant design on 10 points in the interval [−4, 4]
Note: D-optimal design has 8 support points (saturated)

-6 -4 -2 0 2 4 6

2

4

6

8

10

12

x

y
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Optimal Design

Proof; Step 1 (idea): identification of the weights

Equivalence theorem for D-optimality: ξ∗ is D-optimal if and only if

∀x ∈ R e−x2

(1, x , . . . , xn−1)M−1(ξ∗)(1, x , . . . , xn−1)T ≤ n

Moreover, there is equality for all support points of the D-optimal design.

The optimal design has n support points

⇒ ξ∗ =

(
x1 x2 . . . xn

w1 w2 . . . wn

)

|M(ξ∗)| =
∏

1≤i<j≤n

(xi − xj)
2

n∏
i=1

e−x2
i

n∏
i=1

wi

−→ max
xi ,wi

−→ wi =
1

n
, i = 1, . . . , n
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Optimal Design

Proof; Step 2 (idea): identification of the support

Let
f (x) = (x − x1) . . . (x − xn)

denote the supporting polynomial.

The necessary condition for an extremum yields a system of n non-linear
equations

f ′′(xj )− 2xj f
′(xj ) = 0 j = 1, . . . n

Derive a differential equation for the supporting polynomial

f ′′(x)− 2xf ′(x) = −2nf (x)

This differential equation has exactly one polynomial solution

f (x) = cHn(x)
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Weak asymptotics of optimal designs

Weak asymptotics of roots of Hermite polynomials:

Theorem 2:

ξ∗n((0, t]) =
1

n
#
{
z ≤ t | Hn

(√
nz
)

= 0
}

If n→∞, then : ξ∗n converges weakly to an absolute continuous

measure µ∗ with density

dµ∗

dx
=

1

π

√
2− x2I[−

√
2,
√
2](x)

µ∗ is called the Wigner semi-circle law
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Weak asymptotics of optimal designs

Proof (idea):

Use the differential equation for Hermite polynomials to derive a recurrence
relation for the moments of the uniform distribution ξ∗n on the set{

z ≤ t | Hn

(√
nz
)

= 0
}

that is

µ2r,n =
1

2

{
r−1∑
ν=0

µ2r−2ν−2,nµ2ν,n −
2r − 1

n
µ2r−2,n

}
Recurrence relation in the limit (n→∞)

µ∗2r =
1

2

r−1∑
ν=0

µ∗2r−2ν−2µ
∗
2ν

Identify the moments and the limit distribution

µ∗2r =
1

r + 1

(1

2

)r
(

2r

r

)
=

1

π

∫ √2

−
√
2

x2r
√

2− x2dx
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Random matrices - the Gaussian ensemble

Elementary random matrix theory

Mn ∈ Rn×n symmetric matrix with i.i.d. entries Mn(i , j) ∼ N (0, 12)

Problem: location of the eigenvalues of the random matrix Mn ?

The joint density of the (random) eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn of
the matrix Mn is given by

h(λ) = c
∏

1≤i<j≤n

|λi − λj|
n∏

i=1

e−
λ2

i
2 ,

(Maximum likelihood) Typical locations are the points where the
density is maximal!

D-optimal design theory tells us: look at roots of the Hermite
polynomial Hn(z)

Note: If n→∞ the roots of Hn(
√
nz) become dense in [−

√
2,
√

2].
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Random matrices - the Gaussian ensemble

Semi-circle law for the Gaussian ensemble

Theorem 3 Let λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ

(n)
n denote the eigenvalues of the

random matrix
1√
n
Mn

and by

µn =
1

n

n∑
j=1

δ
λ
(n)
j

the empirical eigenvalue distribution (δx is the Dirac measure), then for
any t ∈ [−

√
2,
√

2]

lim
n→∞

µn((−
√

2, t]) =
1

π

∫ t

−
√
2

√
2− x2dx a.s.
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Random matrices - the Gaussian ensemble

Eigenvalues of a 5000× 5000 matrix
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Figure: Left panel: histogram of the simulated eigenvalues.
Right panel: asymptotic distribution
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Random matrices - the Gaussian ensemble

Eigenvalues of a 5000× 5000 matrix
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Figure: Histogram of the simulated eigenvalues and the asymptotic distribution
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β-ensembles

β-ensembles

The β-ensemble (β > 0) is defined by the density

h(λ) = c
∏

1≤i<j≤n

|λi − λj|β
n∏

i=1

e−
λ2

i
2 , (1)

Density of the eigenvalues of a n × n matrix with normally distributed
random variables [Dyson (1962)], where

β = 1: real entries
β = 2: complex entries
β = 4: quaternion entries

Is there any random matrix whose eigenvalue distribution is
given by (1) for any β > 0?

The answer is positive [Dumitriu and Edelman, 2004]

The matrix can be chosen in a tridiagonal form (Householder
transformations)!
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β-ensembles

Tridiagonal matrix representation for the β-ensemble

G
(1)
n =

1√
2



√
2N1 X(n−1)β

X(n−1)β
√

2N2 X(n−2)β
. . .

. . .
. . .

X2β

√
2Nn−1 Xβ
Xβ

√
2Nn


Note:

N1,N2, . . . ,Nn are standard normal distributed (Nj ∼ N (0, 1))

For j = 1, . . . , n − 1 the random variable X 2
jβ is chi-square distributed

with ”jβ degrees of freedom” (X 2
jβ ∼ χ2(jβ))

All random variables are independent
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β-ensembles

Eigenvalues are ”close” to roots of orthogonal polynomials

Theorem 4: [D., Imhof, 2007] If

λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ

(n)
n

denote the eigenvalues of the matrix 1√
n
G

(1)
n and

ξ
(n)
1 < ξ

(n)
2 < · · · < ξ

(n)
n

denote the zeros of the polynomial Hn(
√
nβz), then (n→∞)

max
1≤j≤n

|λ(n)j − ξ
(n)
j | = O

(( log n

n

)1/2)
a.s.
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β-ensembles

Idea of a proof of Theorem 4

Expectation of chi-square distribution E[X 2
jβ] = jβ. Approximate

E[Xjβ] ≈
√

jβ

Consider the (non-random) matrix

E [G
(1)
n ] ≈ Fn =

√
β

2


0

√
n − 1√

n − 1 0
√
n − 2

. . .
. . .

. . .√
2 0 1

1 0

 (2)

Note: by the three term recurrence relation for Hermite polynomials
we have:

det(xIn − Fn) =

(√
β

2

)n

Hn

(
x√
β

)
24 / 54



β-ensembles

Idea of a proof of Theorem 4

λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ

(n)
n : eigenvalues of the matrix 1√

n
G

(1)
n

ξ
(n)
1 < · · · < ξ

(n)
n : roots of the polynomial Hn(

√
nβz)

Weyl’s inequality
√
n max
1≤j≤n

|λ(n)j − ξ
(n)
j | ≤ ‖G

(1)
n − Fn‖∞ = max

1≤i≤n

n∑
j=1
|(G (1)

n − Fn)ij |

Large deviations:

P
{ |Xjβ−

√
jβ|√

2
≥ ε

3

}
≤ 2e−ε

2/9, P
{
|Nj | ≥ ε

3

}
≤ 2e−ε

2/18

=⇒ P
{

max
1≤j≤n

∣∣∣λ(n)j − ξ
(n)
j

∣∣∣ ≥ ε} ≤ 4ne−nβε2/9

Borel Cantelli

max
1≤j≤n

|λ(n)j − ξ
(n)
j | = O

(( log n

n

)1/2)
a.s.
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β-ensembles

Idea of a proof of Theorem 3 (β = 1)

The random eigenvalues of the matrix 1√
n
G

(1)
n can be (uniformly,

almost surely) approximated by roots of the Hermite polynomial
Hn(
√
nβz).

The uniform distribution on the roots Hermite polynomial Hn(
√
nβz)

converges weakly to Wigner’s semi-circle law.

The empirical eigenvalue distribution of the random matrix 1√
n
G

(1)
n

converges weakly to Wigner’s semi-circle law (almost surely).
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Random band matrices

Random band matrices - tridiagonal (r = 1 , β1 > 0)

G
(1)
n =

1√
2


√
2 N1 X(n−1)β1

X(n−1)β1

√
2 N2 X(n−2)β1

X(n−2)β1

√
2N3 X(n−3)β1

. . .
. . .

. . .

. . .
. . .

. . .
. . .



All random variables are independent!
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Random band matrices

Random 5-band matrices (r = 2, β1, β2 > 0)

G
(2)
n =

1√
2



√
2 N1 X(n−1)β1 X(n−2)β2

X(n−1)β1

√
2 N2 X(n−2)β1 X(n−3)β2

X(n−2)β2 X(n−2)β1

√
2N3 X(n−3)β1 X(n−4)β2

. . .
. . .

X(n−3)β2 X(n−3)β1

√
2N4 X(n−4)β1

. . .
. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .



All random variables are independent!
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Random band matrices

Random 7-band matrices (r = 3, β1, β2, β3 > 0 )

G
(3)
n =

1√
2



√
2 N1 X(n−1)β1 X(n−2)β2 X(n−3)β3

X(n−1)β1

√
2 N2 X(n−2)β1 X(n−3)β2 X(n−4)β3

X(n−2)β2 X(n−2)β1

√
2N3 X(n−3)β1 X(n−4)β2 X(n−5)β3

. . .

X(n−3)β3 X(n−3)β2 X(n−3)β1

√
2N4 X(n−4)β1 X(n−5)β2

. . .

X(n−4)β3 X(n−4)β2 X(n−4)β1

√
2N4 X(n−5)β1

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .



All random variables are independent!
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Random band matrices

Random 2r + 1 band matrices (β1, . . . , βr > 0)

√
2G

(r)
n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

√
2 N1 X(n−1)β1 . . . X(n−r)βr

X(n−1)β1

√
2 N2 . . . X(n−r)βr−1

X(n−r−1)βr

X(n−2)β2 X(n−2)β1

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . .

X(n−r)βr X(n−r)βr−1

. . .
. . .

. . .
. . .

. . .

X(n−r−1)βr

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

X2β1 Xβ2√
2 Nn−1 Xβ1
Xβ1

√
2 Nn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
All random variables are independent!
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Random band matrices

5-band and tridiagonal block matrices (2× 2 blocks )

G
(2)
n =

1√
2



√
2 N1 X(n−1)β1 X(n−2)β2 0

X(n−1)β1

√
2 N2 X(n−2)β1 X(n−3)β2

X(n−2)β2 X(n−2)β1

√
2N3 X(n−3)β1 X(n−4)β2 0

0 X(n−3)β2 X(n−3)β1

√
2N4 X(n−4)β1 X(n−5)β2

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .
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Random band matrices

7-band and tridiagonal block matrices (3× 3 blocks)

G
(3)
n =

1√
2



√
2 N1 X(n−1)β1 X(n−2)β2 X(n−3)β3 0 0

. . .

X(n−1)β1

√
2 N2 X(n−2)β1 X(n−3)β2 X(n−4)β3 0

. . .

X(n−2)β2 X(n−2)β1

√
2N3 X(n−3)β1 X(n−4)β2 X(n−5)β3

. . .

X(n−3)β3 X(n−3)β2 X(n−3)β1

√
2N4 X(n−4)β1 X(n−5)β2

. . .

0 X(n−4)β3 X(n−4)β2 X(n−4)β1

√
2N5 X(n−5)β1

. . .

0 0 X(n−5)β3 X(n−5)β2 X(n−5)β1

√
2N6

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .
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Random band matrices

2r + 1-band and tridiagonal block matrices (r × r blocks)

G
(r)
n =


B0 A1

AT
1 B1 A2

. . .
. . .

. . .

AT
m−2 Bm−2 Am−1

AT
m−1 Bm−1

 ∈ Rn×n

where

n = mr

Bi are symmetric random matrices

Ai are lower random triangular matrices

Problem: location of the eigenvalues?
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Matrix orthogonal polynomials

Excursion: matrix orthogonal polynomials
Matrix polynomials [Krein (1969), Damanik, Killip, Pushnitski, Simon
(2008,2010)]

Pn(x) = Dnx
n + Dn−1x

n−1 + . . .+ D1x + D0

where D0, . . . ,Dn are r × r matrices with real entries

Example:

P3(x) =

(
x3 + x − 1 2x + 1

x − 1 3x2

)

Roots of a matrix polynomial are defined by detPn(x) = 0

Matrix measure ψ is a matrix of signed Borel measures on the real line such
for any Borel set A the matrix ψ(A) is nonnegative definite
(spectral measure of multivariate stationary processes)

”Inner product” with respect to the matrix measure ψ

〈Pn,Pm〉 :=

∫
R
Pn(x)dψ(x)PT

m (x) ∈ Rr×r
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Matrix orthogonal polynomials

Excursion: matrix orthogonal polynomials

Matrix polynomials are called orthonormal if and only if

〈Pn,Pm〉 = δn,mIr ∈ Rr×r

Some properties of the scalar case are still valid

- All roots of orthogonal matrix polynomials are real

- Favard’s Theorem: {Pn}n∈N defines a sequence of matrix
orthonormal polynomials if and only

xPn(x) = An+1Pn+1(x) + BnPn(x) + AT
n Pn−1(x), n ≥ 0,

for symmetric matrices Bn and arbitrary non singular matrices An

[D. and Studden (2002)]
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Matrix orthogonal polynomials

Excursion: matrix orthogonal polynomials

Matrix multiplication is not commutative

Orthonormal matrix polynomials are not uniquely determined

The roots of matrix orthogonal polynomials are not interlacing

Characterization of the boundary of the moment space corresponding
to matrix measures?

There exists no example of matrix orthogonal polynomials, which has
been completely understood

Example: Scalar Chebyshev polynomials (first kind)

T−1(x) = 0 , T0(x) = 1 , Tn+1(x) = 2xTn(x)− Tn−1(x)

Trigonometric representation: Tn(x) = cos(n arccos x)
Measure of orthogonality: arcsine distribution with density

1

π

1√
1− x2

I[−1,1](x)
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Matrix orthogonal polynomials

Excursion: matrix Chebyshev polynomials

A ∈ Rr×r non singular; B ∈ Rr×r symmetric

Recurrence relation TA,B
0 (x) = Ip,

TA,B
1 (x) = (

√
2A)−1(xIp − B)

xTA,B
1 (x) = ATA,B

2 (x) + BTA,B
1 (x) +

√
2ATTA,B

0 (x)

xTA,B
n (x) = ATA,B

n+1(x) + BTA,B
n (x) + ATTA,B

n−1(x), n ≥ 2,

If r = 1 the measure of orthogonality is given by a linear
transformation of the arcsine distribution with density

1

π

1√
1− x2

I[−1,1](x)

Open problem: The matrix measure XA,B of orthogonality in the
case r > 1 ?
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Limiting spectrum of random band matrices

Return to random of block matrices

We are interested in the eigenvalues of the matrix

G
(r)
n =


B0 A1

AT
1 B1 A2

. . .
. . .

. . .

AT
m−2 Bm−2 Am−1

AT
m−1 Bm−1

 ∈ Rn×n

where

n = mr

Bi are symmetric random matrices

Ai are lower random triangular matrices

Problem: location of the eigenvalues?
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Limiting spectrum of random band matrices

The structure of the blocks (r × r)

Bi =
1√
2



√
2Nir+1 X(n−ir−1)β1 · · · X(n−(i+1)r+1)βr−1

X(n−ir−1)β1

√
2Nir+2 · · · X(n−(i+1)r+1)βr−2

...
. . .

. . .
...

X(n−(i+1)r+1)βr−1
· · · X(n−(i+1)r+1)β1

√
2N(i+1)r



Ai =
1√
2



X(n−ir)βr
0 0 · · · 0

X(n−ir)βr−1
X(n−ir−1)βr

0 · · · 0

...
. . .

. . .
. . .

...

X(n−ir)β1
X(n−ir−1)βr−1

· · · · · · X(n−(i+1)r+1)βr


,
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Limiting spectrum of random band matrices

The structure of the blocks in the case r = 3:

Bi =
1√
2

( √
2 N3i+1 X(n−3i−1)β1 X(n−3i−2)β2

X(n−3i−1)β1

√
2 N3i+2 X(n−3i−2)β1

X(n−3i−2)β2 X(n−3i−2)β1

√
2N3i+3

)

Ai =
1√
2

(
X(n−3i)β3 0 0
X(n−3i)β2 X(n−3i−1)β3 0
X(n−3i)β1 X(n−3i−1)β2 X(n−3i−2)β3

)

Note: in the following discussion we will explain the structure
always in the case r = 3!
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√
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√
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Limiting spectrum of random band matrices

Eigenvalues of block matrices and roots of polynomials

Theorem 5: [D., Reuther, 2010] Let

λ
(n)
1 ≤ λ

(n)
2 ≤ . . . ≤ λ

(n)
n

denote the eigenvalues of the random block matrix

1√
n
G (r)

n ,

then as n→∞:

max
1≤j≤n

|λ(n)j − ξ
(n)
j | = O

(( log n

n

)1/2)
a.s.

where
ξ
(n)
1 ≤ ξ(n)2 ≤ . . . ≤ ξ(n)n

are the roots of the m = (n/r)th matrix orthonormal polynomial Rm,n(x) defined

by R−1,n(x) = 0, R0,n(x) = Ir

xRk,n(x) = Ak+1,nRk+1,n(x) + Bk,nRk,n(x) + AT
k,nRk−1,n(x); k ≥ 0,
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Limiting spectrum of random band matrices

Coefficients in the recurrence relation (here for r = 3):

Ak,n =
1√
2n

( √
(3k − 2)β3 0 0√
(3k − 1)β2

√
(3k − 1)β3 0√

3kβ1
√
3kβ2

√
3kβ3

)

Bk,n =
1√
2n

(
0

√
(3k + 1)β1

√
(3k + 1)β2√

(3k + 1)β1 0
√

(3k + 2)β1√
(3k + 1)β2

√
3k + 2β1 0

)
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Limiting spectrum of random band matrices

Coefficients in the recurrence relation (here for r = 3):

Note: If n→∞ and k
n → u ∈ (0, 1), then

Ak,n =
1√
2n

( √
(3k − 2)β3 0 0√
(3k − 1)β2

√
(3k − 1)β3 0√

3kβ1
√
3kβ2

√
3kβ3

)

−→ A(u) :=

√
3u

2

( √
β3 0 0√
β2

√
β3 0√

β1
√
β2

√
β3

)

Bk,n =
1√
2n

(
0

√
(3k + 1)β1

√
(3k + 1)β2√

(3k + 1)β1 0
√

(3k + 2)β1√
(3k + 1)β2

√
3k + 2β1 0

)

−→ B(u) :=

√
3u

2

(
0

√
β1

√
β2√

β1 0
√
β1√

β2
√
β1 0

)
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Limiting spectrum of random band matrices

Matrix orthogonal polynomials with varying coefficients

Problem: For n ∈ N let {Rk,n(x)}k∈N0 denote a sequence of matrix
orthonormal polynomials defined by R−1,n(x) = 0r, R0,n(x) = Ir

xRk,n(x) = Ak+1,nRk+1,n(x) + Bk,nRk,n(x) + AT
k,nRk−1,n(x); k ≥ 0,

where
lim
k
n
→u

Bk,n = B(u), lim
k
n
→u

Ak,n = A(u)

whenever u ∈ (0, 1). What is the behavior of the roots of the
polynomials

Qk,n(x)

if n→∞?

Note: By Theorem 5 we expect that the eigenvalues of the random
band matrix have similar properties (k = m; n = mr → u = 1/r)!
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Limiting spectrum of random band matrices

An algebraic equation (Widom, 1974)

Define the equation (x , z ∈ C)

0 = fu(z, x) := det(A(u)Tz + B(u) + A(u)z−1 − xIr) (3)

Note:

For fixed x ∈ C there exist 2r roots z1(x , u), . . . z2r (x , u) of equation
(3), which can ordered according to

|z1(x , u)| ≤ |z2(x , u)| . . . ≤ |z2r (x , u)|

For any u ∈ (0, 1)

Γ0(u) = {x ∈ C | |zr (x , u)| = |zr+1(x , u)|} ⊂ R

is a union of at most r disjoint intervals.
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Limiting spectrum of random band matrices

Weak asymptotics for matrix orthonormal polynomials
Theorem 6 [Delvaux, D., 2011] Let

νn =
1

n

n∑
j=1

δ
ξ
(n)
j

denote empirical distribution function of the roots of the polynomial
Rk,n(x) defined by

xRk,n(x) = Ak+1,nRk+1,n(x) + Bk,nRk,n(x) + AT
k,nRk−1,n(x); k ≥ 0,

where
lim
k
n
→u

Bk,n = B(u), lim
k
n
→u

Ak,n = A(u).

Then νn converges weakly to a measure µ0,u, with logarithmic potential

1

ru

∫ u

0
log |z1(x , t) . . . zr (x , t)| dt + Cu, x ∈ C \

⋃
0≤t≤u

Γ0(t),

(here Cu is some constant).
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Limiting spectrum of random band matrices

Identification of the limit distribution

Theorem 7 [Delvaux, D. 2011] The measure µ0,u with logarithmic
potential

1

ru

∫ u

0
log |z1(x , t) . . . zr (x , t)| dt + Cu, x ∈ C \

⋃
0≤t≤u

Γ0(t),

is absolute continuous with density given by

dµ0,u(x)

dx
=

1

2πur

∫ u

0

∑
k:|zk(x,s)|=1

∣∣∣ ∂∂xzk(x, s)

zk(x, s)

∣∣∣ds
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Limiting spectrum of random band matrices

Application to random block matrices

By Theorem 5 it can be shown that the eigenvalue distribution has
the same asymptotic properties as the distribution of the roots of
matrix orthogonal polynomials Qm,n(x), where m = n/r

This means

lim
n→∞

m

n
=

1

r

Theorem 7 yields for the limiting distribution

dµ0,1/r(x)

dx
=

1

2π

∫ 1/r

0

1√
s

∑
k:|zk(x/

√
s)|=1

∣∣∣z′k(x/
√

s)

zk(x/
√

s)

∣∣∣ds

where z1(x), z2(x), . . . , z2r (x) are the (ordered) roots of the equation

0 = f(z, x) := det(AT(1)z + B(1) + A(1)z−1 − xIr)
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Limiting spectrum of random band matrices

Application to random block matrices

A(1) :=

√
r

2



√
βr 0 0 · · · 0√
βr−1

√
βr 0 · · · 0

...
. . .

. . .
. . .

...

√
β2 · · ·

√
βr−1

√
βr 0√

β1 · · ·
√
βr−2

√
βr−1

√
βr


∈ Rr×r ,

B(1) :=

√
r

2



0
√
β1
√
β2 · · ·

√
βr−1√

β1 0
√
β1 · · ·

√
βr−2

...
. . .

. . .
. . .

...√
βr−2 · · ·

√
β1 0

√
β1√

βr−1 · · ·
√
β2
√
β1 0


∈ Rr×r ,
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Limiting spectrum of random band matrices

Eigenvalues of a 5000× 5000 matrix (β1 = β2 = 1)
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Figure: Left panel: histogram of the simulated eigenvalues
Right panel: asymptotic distribution
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Limiting spectrum of random band matrices

Eigenvalues of a 5000× 5000 matrix (β1 = 5; β2 = 1)
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Figure: Left panel: histogram of the simulated eigenvalues
Right panel: asymptotic distribution
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Limiting spectrum of random band matrices

Eigenvalues of a 5000× 5000 matrix
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Figure: Left panel: histogram and density (β1 = 1; β2 = 1)
Right panel: histogram and density (β1 = 5; β2 = 1)
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Limiting spectrum of random band matrices

Conclusions and further research

Optimal designs - (matrix) orthogonal polynomials - random matrices

I did not present a solution of the design problem for the dose finding
trial (it is too complicated)!

Possible future research:

Measure of orthogonality for matrix Chebyshev polynomials?

Wigner block matrices (there seem to exist relations to free
probability)?

Distribution of the eigenvalues of the band matrices considered here?

Use matrix orthogonal polynomials for solving optimal design
problems?

Matrix measures and stationary processes?
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Limiting spectrum of random band matrices
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