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Optimal Design

Motivating example: drug development (clinical phase)

pre-clinic clinic
|

market
|

| | |
phase | phase Il

first experiments

with humans efficacy,

dose finding,
safety ...

@ Phase |: 20 — 40 patients
@ Phase II: 100 — 300 patients
@ Phase IIl: 1000 — 10000 patients

|
phase Il

(large) clinical trials
(proof of efficacy,
side effects)

What dose level should be used in the the phase Il trial?
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Optimal Design

Motivating Example: drug development

@ Confirmatory trial (phase Il) to determine the appropriate target dose

@ Main goal: estimation of the minimum effective dose level (target dose),
which produces at least the clinically relevant effect

@ Mathematical (extremely simplified) description of the dose response
relationship (Michaelis Menten model)




Optimal Design

(Nonlinear) regression model

Y = n(x,0) + o(x,0)e, xeX

@ X denotes the design space
e ¢ random error, E[g] =0, E[?] =1
@ m independent observations Yi,..., Y,, at experimental conditions
X1,...,Xm to estimate the vector of parameters 0
e Expectation of Y (at experimental condition x) is given by 7(x, 6)
@ Variance of Y (at experimental condition x) is given by o2(x, )
o Example: Michaelis Menten model
n(x,0) = Xeix%  o(x0) = xeixez CxeXx=(0,00)
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Optimal Design

Problem: At which points x; should we take observations 7

Definition: An approximate design & is a probability measure on the
design space X.

Example:

25 80 150
E=11 1 1
3 3 3

= 1/3 of the total observations at each point 25, 80 and 150

o m=30 — 10,10, 10

o m=40 — 13,14,13



Measuring the quality of designs

~

@ Weighted least squares estimator: 6

= Cov(f) ~ =M71(¢)

where

1 on(x,0) T(?n(x,t?)
(x 9)( 00 ) 00

1 <802(X, 9)) T 902(x, 0)

e = [
.

204(x, 0) d(x)

00 00

denotes the information matrix of the design £ (this measure refers to the
normality assumption).



Optimal Design

Measuring the quality of designs

~

@ Weighted least squares estimator: 6

= Cov(f) ~ =M71(¢)

where

1 on(x,0) T@n(x,&)
2(X,9)< 00 ) 00

1 <802(X, 9)) T 902(x, 0)

me = [ -
N

204(x, 0) d(x)

00 00

denotes the information matrix of the design £ (this measure refers to the
normality assumption).

Goal:
@ Maximize M(§) w.r.t. the choice of the design £ (impossible!!)
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Optimality criteria

@ Only a partial ordering in the space of nonnegative definite matrices

e Maximize real valued (statistical meaningful) functions of M(§) —
optimality criteria
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Optimality criteria

@ Only a partial ordering in the space of nonnegative definite matrices

e Maximize real valued (statistical meaningful) functions of M(§) —
optimality criteria
@ The application determines the criterion
o c-optimality (MED-estimation)

¢ = argmax(c"M 7 (g)e) !

where c is a vector determined by the regression model.
o D-optimality (precise estimation of all parameters)

£ = arg max IM()]

@ In this talk we will only consider D-optimal designs and polynomial
models!
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Optimal Design

Classical (weigthed) polynomial regression model

@ Polynomial reg

ression model [0 = (6p,...,0,-1)", x € (—00,0)]

n—1
n(x0) = > 6
j=0

o?(x,0) = e

e Example: n =2, linear regression model (with heteroscedastic error)

%77

(x,0) = (1,x,...,x"HT %Uz(X, 6)=0
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Optimal Design

D—optimal design problem (weighted polynomial regression)

A D-optimal design maximizes the determinant

mEl = | / e de) |

R

n—1e—><2 dg(X)
x"e™ ¥ d¢(x)

e d¢(x) [ xe™dé(x)

R

J

R

fxe_Xde(x) fx2e_x dé(x
R R

5
%%?

[x e de(x)  [x2e™dE(x) ... [x2"2e X" dE(x)

R

ES
Ee

in the class of all probability measures of R.
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Optimal Design

D-optimal design problem

Theorem 1: The D-optimal design £* is a uniform distribution on the set

{z | Ho(z) = 0}

where H,, denotes the n-th Hermite polynomial, orthogonal with respect to
the measure

2
e *dx

Two Proofs:
e Equivalence theorems (from design theory) and second order

differential equations (Stieltjes)

@ Moment theory
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Proof; Step 1 (idea): identification of the weights

@ Equivalence theorem for D-optimality (Kiefer and Wolfowitz, 1960):
&* is D-optimal if and only if

Vx € R efxz(l,x,...7X”*1)M*1(§*)(1,X,...,X”*I)T <n

Moreover, there is equality for all support points of the D-optimal design.
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Proof; Step 1 (idea): identification of the weights
@ Equivalence theorem for D-optimality (Kiefer and Wolfowitz, 1960):
&* is D-optimal if and only if
Vx € R efxz(l,x, XM THEN (L, x, ., x"H)T < on
Moreover, there is equality for all support points of the D-optimal design.

@ Example: weighted polynomial regression of degree 7 (n = 8)
e D-optimal design (solid curve)
o Equidistant design on 10 points in the interval [—4,4]
o Note: D-optimal design has 8 support points (saturated)
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Proof; Step 1 (idea): identification of the weights

@ Equivalence theorem for D-optimality: £* is D-optimal if and only if
Vx eR e (Lx,...,x" HYM ()1, x,....x" )T < n
Moreover, there is equality for all support points of the D-optimal design.

@ The optimal design has n support points

- f* _ X1 X2 ... Xp
w1 Wo ... Wp
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Proof; Step 1 (idea): identification of the weights
@ Equivalence theorem for D-optimality: £* is D-optimal if and only if
Vx €R e (Lx, ..., x" YM )L, x,...,.x" )T < n

Moreover, there is equality for all support points of the D-optimal design.

@ The optimal design has n support points

- f* _ ( X1 X2 ... Xp )
w1 Wo ... Wp
(]
n n
2
M) = I ) [Je [[w
1<i<j<n i=1 i=1
— max
Xi Wi
— w;, = — , i=1...,n
n
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Optimal Design

Proof; Step 2 (idea): identification of the support
@ Let
f(x)=(x—x1)...(x — xp)
denote the supporting polynomial.

@ The necessary condition for an extremum yields a system of n non-linear

equations
f"(x) — 2xif'(x)) =0 j=1,...n

14 /54



Proof; Step 2 (idea): identification of the support

@ Let
f(x)=(x—=x1)...(x —x,)

denote the supporting polynomial.

@ The necessary condition for an extremum yields a system of n non-linear

equations
f"(x) — 2xif'(x)) =0 j=1,...n

@ Derive a differential equation for the supporting polynomial

f"(x) — 2xf'(x) = —2nf(x)

@ This differential equation has exactly one polynomial solution
f(x) = cHp(x)
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Weak asymptotics of optimal designs

Weak asymptotics of roots of Hermite polynomials:

@ Theorem 2:
6(0.1) = #{z<t|Hn(viaz) = 0

If n — oo, then : £} converges weakly to an absolute continuous

measure p* with density

du* 1 ——

@ u* is called the Wigner semi-circle law
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Proof (idea):

@ Use the differential equation for Hermite polynomials to derive a recurrence
relation for the moments of the uniform distribution £} on the set

{zgt|Hn(ﬁz) - 0}

that is
r—1

1 2r—1
H2rn = 2{2}#2r2v2,nﬂ2u,n - n ,U2r2,n}

@ Recurrence relation in the limit (n — o)
=
Hor = 2 Zuﬁr—zu—zﬂzu
v=0
@ Identify the moments and the limit distribution

W, = — <1>r(2,> = 1/@ X2'\/2 — x2dx

r+1\2 r T ) 3
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Random matrices - the Gaussian ensemble

Elementary random matrix theory

o M, € R™" symmetric matrix with i.i.d. entries M,(i,j) ~ N(0,1)

@ Problem: location of the eigenvalues of the random matrix M, ?
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Random matrices - the Gaussian ensemble

Elementary random matrix theory

o M, € R™" symmetric matrix with i.i.d. entries M,(i,j) ~ N(0,1)

@ Problem: location of the eigenvalues of the random matrix M, ?
@ The joint density of the (random) eigenvalues \; < X\p < ... < A, of

the matrix M, is given by
=c H IAi —/\\He 3
1<i<j<n

@ (Maximum likelihood) Typical locations are the points where the
density is maximal!
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Random matrices - the Gaussian ensemble

Elementary random matrix theory

o M, € R™" symmetric matrix with i.i.d. entries M,(i,j) ~ N(0,1)
@ Problem: location of the eigenvalues of the random matrix M, ?

@ The joint density of the (random) eigenvalues \; < X\p < ... < A, of
the matrix M, is given by

=c H \)\—/\\HeT

1<i<j<n

@ (Maximum likelihood) Typical locations are the points where the
density is maximal!

o D-optimal design theory tells us: look at roots of the Hermite
polynomial H,(z)

o Note: If n — oo the roots of H,(1/nz) become dense in [—v/2,v/2].

17 /54



Random matrices - the Gaussian ensemble

Semi-circle law for the Gaussian ensemble

Theorem 3 Let )\gn) < )\g") <...< )\5,”) denote the eigenvalues of the
random matrix

Mp

Sl

and by
1 n
= 335
j=1

the empirical eigenvalue distribution (Jx is the Dirac measure), then for

any t € [-v2,V2]

1

n|i_>ngoﬂn((—\/§, t])) = W/_i@ V2 —x%dx a.s.
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Eigenvalues of a 5000 x 5000 matrix

Figure: Left panel: histogram of the simulated eigenvalues.
Right panel: asymptotic distribution
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Eigenvalues of a 5000 x 5000 matrix

Figure: Histogram of the simulated eigenvalues and the asymptotic distribution
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[3-ensembles

[-ensembles
@ The [-ensemble (8 > 0) is defined by the density

=c [] \)\—)\|5He7', (1)

1<i<j<n

Density of the eigenvalues of a n x n matrix with normally distributed
random variables [Dyson (1962)], where

B =1: real entries
B =2: complex entries
B8 =4: quaternion entries
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[3-ensembles

[-ensembles
@ The [-ensemble (8 > 0) is defined by the density

h) =c JT M-xPe? . M
i=1

1<i<j<n

Density of the eigenvalues of a n x n matrix with normally distributed
random variables [Dyson (1962)], where

B =1: real entries
B =2: complex entries
B8 =4: quaternion entries

o Is there any random matrix whose eigenvalue distribution is
given by (1) for any 5 > 07
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[3-ensembles

[-ensembles
@ The [-ensemble (8 > 0) is defined by the density

2
AL

h(\) = ¢ [] \)\;—)\jlﬂﬁe_z , (1)
i=1

1<i<j<n

Density of the eigenvalues of a n x n matrix with normally distributed
random variables [Dyson (1962)], where

B =1: real entries
B =2: complex entries
B8 =4: quaternion entries

o Is there any random matrix whose eigenvalue distribution is
given by (1) for any 5 > 07
@ The answer is positive [Dumitriu and Edelman, 2004]

@ The matrix can be chosen in a tridiagonal form (Householder

transformations)!
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[3-ensembles

Tridiagonal matrix representation for the 3-ensemble

I \/ENI Xn 1)8
| f 2Nz o)

Xog  V2N,1  Xp
Xp V2N, ]

Note:
® Ni,Ny,..., N, are standard normal distributed (N; ~ N(0,1))

@ For j=1,...,n—1 the random variable Xﬂ is chi-square distributed
with "3 degrees of freedom” (ijﬁ ~ x%(jB))

@ All random variables are independent
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[B-ensembles

Eigenvalues are "close” to roots of orthogonal polynomials
Theorem 4: [D., Imhof, 2007] If

A <A <<

16V and

denote the eigenvalues of the matrix

e <<l

denote the zeros of the polynomial H,(v/nBz), then (n — o0)

max |)\ f}")\ = O((Iogn>1/2) a.s.

1<j<n n

23 /54



Idea of a proof of Theorem 4

@ Expectation of chi-square distribution E[ijﬂ] = jB. Approximate

E[Xjs] ~ V/iB
e Consider the (non-random) matrix
[0 vn—1 ]
vn—1 0 vn—2
E[GMN] ~ F,= g g (2)
V2. 0 1
1

@ Note: by the three term recurrence relation for Hermite polynomials

T = () ()
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[3-ensembles

Idea of a proof of Theorem 4

° )\gn) < )\gn) <...< )\g,") . eigenvalues of the matrix %G,(,l)

° fg") << §£,n): roots of the polynomial H,(\/nf5z)
@ Weyl's inequality

n

n n 1 1
v max N7 7] < |61 — Fille = max 32 (G1 — Fu)
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[3-ensembles

Idea of a proof of Theorem 4
° )\gn) < )\gn) <...< )\g,") . eigenvalues of the matrix %G,(,l)
° fg") << §£,n): roots of the polynomial H,(\/nf5z)
@ Weyl's inequality

(n) _ o(n) @ _ SV R
\/E max |)‘ gj | < ||Gn Falloo 12?§>(HJ;‘(GH Fn)ijl

° Large deviations:
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[3-ensembles

Idea of a proof of Theorem 4
° )\gn) < )\gn) <...< )\g,") . eigenvalues of the matrix %G,(,l)
° fg") << §£,n): roots of the polynomial H,(\/nf5z)
@ Weyl's inequality

(n) _ o(n) @ _ SV R
\/ﬁ max |)‘ gj | < ||Gn Falloo 12?§>(HJ;‘(GH Fn)ijl

° Large deviations:

o Borel Cantelli

o 7401~ 0((B7)") as.
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|dea of a proof of Theorem 3 (8 = 1)

@ The random eigenvalues of the matrix %G,(,l) can be (uniformly,
almost surely) approximated by roots of the Hermite polynomial

Hnl(v/nB2).

@ The uniform distribution on the roots Hermite polynomial H,(\/nf3z)

converges weakly to Wigner's semi-circle law.
@ The empirical eigenvalue distribution of the random matrix %G,Sl)

converges weakly to Wigner's semi-circle law (almost surely).
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Random band matrices - tridiagonal (r =1, 8; > 0)

V2 Ni o Xponys,
1 | Xe-vs V2N Xaap

2 Xo2p  V2N3 X3

All random variables are independent!
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Random 5-band matrices (r = 2, 51, 5> > 0)

V2N Xpns oo,
Xonp V2N Xogs o3,

@ 1| Y2 X2 V2Ns Xoozs Xo-ays,
el
" Ko Xo-9p V2Ne  Xoaypy

S

All random variables are independent!
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Random 7-band matrices (r = 3, 51,532,535 > 0)

G =

V2N Xpns Xo2s oo
Xo-ns, V2N X Xo-np  Nooas,

Xo-2p Xo-2p  V2Ns XKooz, Xooas, ooy
Xons Xomp Xo-zp V2N Xo—ays,  Xaos)s,

Sl

Koas, Xo-ayp, Xo-apy  V2Na  Xoos)s,

All random variables are independent!
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Random 2r + 1 band matrices (51, ..., 3, > 0)

V260 =
V2N X, o Xaeng

Xo-vs V2N o Xong,_, Xa-r-1s,

Xn—2)p,  XMn—2)3

Xn-np,  Xn-np,_,

Xo—r-1),

Xap, X,

V2 Ny_i X,
Xﬂl \@ Ny
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G =
V2N X
Xo-1s V2 Mo
1 Xn-2)p,  Xn-2)8
% 0 X(,,,3)32

5-band and tridiagonal block matrices (2 x 2 blocks )

Xn—2)8,
Xn—2)8
V2N;

X(n-3)8,

0

X("*3)ﬁ2
Xn—3)8,

Xn—a)8, 0
V2Ny  Xnwp Xoos)s,
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Random band matrices

7-band and tridiagonal block matrices (3 x 3 blocks)

G =

Sl

\/§ Nl X(n—l)ﬁl
Xo-ns V2 N
Xn-28,  Mn-2)8
X35 Mn-3),

0 Xn—a)p3
0 0

X(n—2)8,
Xn—2)8
V2Ns
Xn—3)8
X(n—2)8,

Xin—5)85
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2r + 1-band and tridiagonal block matrices (r x r blocks)

By A
AT B A
Gr("): . . . ERan
A;_2 Bm72 Amfl
Alfl Bm-1
where
@ n=mr

@ B, are symmetric random matrices

@ A; are lower random triangular matrices

Problem: location of the eigenvalues?
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Matrix orthogonal polynomials

Excursion: matrix orthogonal polynomials

@ Matrix polynomials [Krein (1969), Damanik, Killip, Pushnitski, Simon
(2008,2010)]

Po(x) = Dpx™ + Dp_1x" 1 4 ...+ Dix + Dy

where Dy, ..., D, are r X r matrices with real entries

@ Example:
B4 x—1 2x+1
Ps(x) = ( x—1 3x2
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Matrix orthogonal polynomials

Excursion: matrix orthogonal polynomials

@ Matrix polynomials [Krein (1969), Damanik, Killip, Pushnitski, Simon
(2008,2010)]

Po(x) = Dpx™ + Dp_1x" 1 4 ...+ Dix + Dy

where Dy, ..., D, are r X r matrices with real entries

@ Example:
B4 x—1 2x+1
Ps(x) = ( x—1 3x2

@ Roots of a matrix polynomial are defined by det P,(x) =0

@ Matrix measure v is a matrix of signed Borel measures on the real line such
for any Borel set A the matrix ¢(A) is nonnegative definite
(spectral measure of multivariate stationary processes)

@ "Inner product” with respect to the matrix measure 1

(Pp, Py = /RPn(x)dzz;(x)P,I(x) e R™"
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Matrix orthogonal polynomials

Excursion: matrix orthogonal polynomials

@ Matrix polynomials are called orthonormal if and only if
(Pn,Pm) = Onmlr € R™*"
@ Some properties of the scalar case are still valid

- All roots of orthogonal matrix polynomials are real

- Favard's Theorem: {P,},cn defines a sequence of matrix
orthonormal polynomials if and only

xPa(x) = Any1Pni1(X) + BaPu(x) + ATP,1(x), n>0,

for symmetric matrices B, and arbitrary non singular matrices A,
[D. and Studden (2002)]
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Excursion: matrix orthogonal polynomials

Matrix multiplication is not commutative

Orthonormal matrix polynomials are not uniquely determined

The roots of matrix orthogonal polynomials are not interlacing
Characterization of the boundary of the moment space corresponding

to matrix measures?

There exists no example of matrix orthogonal polynomials, which has
been completely understood
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Excursion: matrix orthogonal polynomials

Matrix multiplication is not commutative

Orthonormal matrix polynomials are not uniquely determined

The roots of matrix orthogonal polynomials are not interlacing
Characterization of the boundary of the moment space corresponding

to matrix measures?

There exists no example of matrix orthogonal polynomials, which has
been completely understood
o Example: Scalar Chebyshev polynomials (first kind)

T_1(x)=0, To(x) =1, Thi1(x) =2xTy(x) = Tho1(x)

e Trigonometric representation: T,(x) = cos(narccos x)
e Measure of orthogonality: arcsine distribution with density

1 1

SNl
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Matrix orthogonal polynomials

Excursion: matrix Chebyshev polynomials

@ A€ R™" non singular; B € R™*" symmetric
@ Recurrence relation Téq’B(x) = Ip,

A B
T (x)
xT{E(x)

xT,f\’B(X)

(V2A) ! (xI, — B)
AT B (x) + BT{MB(x) + V2AT T{E (%)

ATE () + BT B (x) + AT T8 (x), n > 2,

@ If r =1 the measure of orthogonality is given by a linear
transformation of the arcsine distribution with density

@ Open problem: The matrix measure X4 g of orthogonality in the

caser >17

1 1
;ﬁl[—l,l](x)
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Limiting spectrum of random band matrices

Return to random of block matrices

We are interested in the eigenvalues of the matrix
By A
AT B A
G,Sr): . . . e]Rnxn

where
@ n=mr
@ B, are symmetric random matrices
@ A; are lower random triangular matrices

Problem: location of the eigenvalues?
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The structure of the blocks (r x r)

V2Nt Xn—ir—1)8, T Xn—(i11)r1)8,_1
X(n—irfl),(ﬁl \/iNir+2 ce X(nf(f+1)r+1)/3,,2
1
B =
i \/§
Xn—(i+1)r+1)8,_1 e Xn—(it1)r11)8, V2N(i11)r
X(n—/r),@, 0 0 0
Xo-ing—r  Xp—i-1)s, 0 -+ 0
1
A = — 7
i \/i
Xin—ingy  Xn—ir—1)8,_; "+ " Xa—(i+1)r+1)5,
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Limiting spectrum of random band matrices

The structure of the blocks in the case r = 3:

V2 Nsis1 Xposicng,  Xo—si—2)s,

1
B = ﬁ Xoosicnyg V2 Nasivz  Xoosiooys,
Xosi-2p, Xn-si—np  V2Nais
1 [ Xo-3s 0 0
A = 7 Xn-3g  Xn-3i-1)8s 0
Xn-sig  An-si-18, Xn—3i-2)8;
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Limiting spectrum of random band matrices

The structure of the blocks in the case r = 3:

V2 Nsiv1 Xoosicng, Xn-3i-2)8,

1
B = ﬁ Xoosicnyg V2 Nasivz  Xoosiooys,
Xosi-2p, Xn-si—np  V2Nais
1 X(n—3i)85 0 0
A = Xn=3iygs  Xn—3i-1)8s 0

V2 Xn-sig  An-si-18, Xn—3i-2)8;

Note: in the following discussion we will explain the structure
always in the case r = 3!
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Eigenvalues of block matrices and roots of polynomials
Theorem 5: [D., Reuther, 2010] Let
A <A < <A
denote the eigenvalues of the random block matrix
1

G\
\/E n

then as n — oo:

max |)\J(-") — f}")| = O((Ioﬁ)l/2> a.s.

1<j<n n

where
e << <

are the roots of the m = (n/r)th matrix orthonormal polynomial Ry n(x) defined
by R_1.n(x) =0, Ron(x) = I,

XRk n(X) = Aki1.nRkt+1,n(X) + Bk nRin(X) + A-lankfl,n(x); k>0,
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Limiting spectrum of random band matrices

Coefficients in the recurrence relation (here for r = 3):

1 (3k —2)ps 0 0
Acn = — ( VBk=1)3. /(Bk—1)5s 0 )
V2n V3kpi V3kB2 V3kB3
1 ( 0 VBk+1)81 /Bk+1)B >
Bkn = — (Bk+1)B 0 (3k+2)b:
Van (Bk+1)3 3Bk+2pB 0
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Limiting spectrum of random band matrices

Coefficients in the recurrence relation (here for r = 3):

Note: If n — oo and % — u € (0,1), then

1 (3k — 2)3 0 0
Akn = — < VBk=1)32 /(3k—1)ps 0 )
van \ 7 sks VKB /3B
3u VB 0 0
— A(u) =/—= | VB VB 0
2\ VB VB VB
1 0 VBk+1)81 /(Bk+1)B
Bkn = —— ( 3k + 1)Bi 0 (3k+2)f >
Von \ Gky 18 VIKF2R 0

3u 0 VB VP
— B(u) == /| vBi 0 VB
2\ VB VB 0

43 /54



Limiting spectrum of random band matrices

Matrix orthogonal polynomials with varying coefficients

e Problem: For n € N let {Ry ,(x)}ken, denote a sequence of matrix
orthonormal polynomials defined by R_1 n(x) = 0y, Ro,n(x) = Ir

xRin(X) = Ak 1nRici1,n(X) + BinRin(X) + Al Re_1n(x); k>0,
where

lim Bgn = B(u), lim Ay, = A(u)
k sy L

whenever u € (0,1). What is the behavior of the roots of the
polynomials

Qk,n(x)

if n — 0o?
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Limiting spectrum of random band matrices

Matrix orthogonal polynomials with varying coefficients

e Problem: For n € N let {Ry ,(x)}ken, denote a sequence of matrix
orthonormal polynomials defined by R_1 n(x) = 0y, Ro,n(x) = Ir

xRin(X) = Ak 1nRici1,n(X) + BinRin(X) + Al Re_1n(x); k>0,

where
lim Bgn = B(u), lim Ay, = A(u)
k_yu k_su

whenever u € (0,1). What is the behavior of the roots of the
polynomials

Qk,n(x)
if n — 0o?

@ Note: By Theorem 5 we expect that the eigenvalues of the random
band matrix have similar properties (k = m;n=mr — u=1/r)!
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An algebraic equation (Widom, 1974)
Define the equation (x,z € C)
0 = fu(z,x) := det(A(u) "z + B(u) + A(u)z™ ! — xI,) (3)

Note:

@ For fixed x € C there exist 2r roots zi(x, u), ...z (x, u) of equation
(3), which can ordered according to

[21(x, u)| < |z2(x, W)] - < [z (X, )
e Forany u e (0,1)
Fo(u) = {x € C[|z(x, u)| = |zr42(x, u)|} C R

is a union of at most r disjoint intervals.
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Limiting spectrum of random band matrices

Weak asymptotics for matrix orthonormal polynomials
Theorem 6 [Delvaux, D., 2011] Let

1
Vp = ;Z(sgj(n)
j=1

denote empirical distribution function of the roots of the polynomial
Rk n(x) defined by

XRi n(x) = Ak;1.0Rkt1,n(X) + BinRicn(x) + A-Iank—l,n(x); k>0,

where
lim By, = B(u), lim Ag, = A(u).
k—u ksu
Then v, converges weakly to a measure 119 ,, with logarithmic potential
1 u
— [ logla(x,t)...z(x, )| dt+ Cpy,  x€C\ |J To(t),
i Jo 0<t<u

(here C, is some constant).
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Limiting spectrum of random band matrices

Identification of the limit distribution

Theorem 7 [Delvaux, D. 2011] The measure pq , with logarithmic
potential

1 u
— [ log|za(x,t)...z(x, )| dt + Csy  x€C\ |J To(t)
' Jo 0<t<u
is absolute continuous with density given by
dMO u / Z %zk(x7 S) ‘dS
dx ~ 2rur z(x, s)

k:|zk(x,8)|=
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Application to random block matrices

@ By Theorem 5 it can be shown that the eigenvalue distribution has
the same asymptotic properties as the distribution of the roots of
matrix orthogonal polynomials Qm n(x), where m = n/r

@ This means

@ Theorem 7 yields for the limiting distribution

Boasl) /‘/ ' S [,
T 2r
o o VS AVE)
where z1(x), z2(x), . . ., z2r(x) are the (ordered) roots of the equation

0 = f(z,x) := det(AT(1)z + B(1) + A(1)z ! —xI,)
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band matrices

m of random
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Application to random block matrices
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Eigenvalues of a 5000 x 5000 matrix (51 = [ = 1)

Figure: Left panel: histogram of the simulated eigenvalues
Right panel: asymptotic distribution
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Eigenvalues of a 5000 x 5000 matrix (51 = 5; 2 = 1)

Figure: Left panel: histogram of the simulated eigenvalues
Right panel: asymptotic distribution
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Eigenvalues of a 5000 x 5000 matrix

Figure: Left panel: histogram and density (51 =1; o =1)
Right panel: histogram and density (1 =5; 2 = 1)



Limiting spectrum of random band matrices

Conclusions and further research

e Optimal designs - (matrix) orthogonal polynomials - random matrices

o | did not present a solution of the design problem for the dose finding
trial (it is too complicated)!
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Limiting spectrum of random band matrices

Conclusions and further research

e Optimal designs - (matrix) orthogonal polynomials - random matrices

o | did not present a solution of the design problem for the dose finding
trial (it is too complicated)!

@ Possible future research:

e Measure of orthogonality for matrix Chebyshev polynomials?

e Wigner block matrices (there seem to exist relations to free
probability)?

o Distribution of the eigenvalues of the band matrices considered here?

e Use matrix orthogonal polynomials for solving optimal design
problems?

e Matrix measures and stationary processes?
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