Optimal design, orthogonal polynomials and random matrices

Holger Dette ⁵

joint work with F. Bretz ¹, S. Delvaux², L. Imhof³, W.J. Studden⁴

¹Novartis, Basel ²Katholieke Universiteit Leuven ³University of Bonn ⁴Purdue University ⁵Ruhr-University Bochum

September 2011, Köln

SFB | TR12

Contents

- Motivating example: dose finding experiment
- Some optimal design theory
- Optimal design for weighted polynomial regression
- Weak asymptotics of optimal designs

Contents

- Motivating example: dose finding experiment
- Some optimal design theory
- Optimal design for weighted polynomial regression
- Weak asymptotics of optimal designs
- Random matrices the Gaussian ensemble
- Random band matrices
- Matrix orthogonal polynomials
- The limiting spectrum of random band matrices

Optimal Design

Motivating example: drug development (clinical phase)

- Phase I: 20 40 patients
- Phase II: 100 300 patients
- Phase III: 1000 10000 patients

What dose level should be used in the the phase III, trial? I_{\pm} , $I_$

Motivating Example: drug development

- Confirmatory trial (phase II) to determine the appropriate target dose
- Main goal: estimation of the minimum effective dose level (target dose), which produces at least the clinically relevant effect
- Mathematical (extremely simplified) description of the dose response relationship (Michaelis Menten model)

イロト イポト イヨト イヨト

4 / 54

(Nonlinear) regression model

$$Y = \eta(x,\theta) + \sigma(x,\theta)\varepsilon, \quad x \in \mathcal{X}$$

- X denotes the design space
- arepsilon random error, E[arepsilon]=0 , $E[arepsilon^2]=1$
- *m* independent observations Y_1, \ldots, Y_m at experimental conditions x_1, \ldots, x_m to estimate the vector of **parameters** θ
- Expectation of Y (at experimental condition x) is given by $\eta(x, \theta)$
- Variance of Y (at experimental condition x) is given by $\sigma^2(x,\theta)$
- Example: Michaelis Menten model

$$\eta(x,\theta) = \frac{\theta_1 x}{x+\theta_2}$$
, $\sigma(x,\theta) = \frac{\theta_1 x}{x+\theta_2}$, $x \in \mathcal{X} = (0,\infty)$

<ロ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

Problem: At which points x_i should we take observations ?

Definition: An **approximate design** ξ is a probability measure on the design space \mathcal{X} .

Example:

$$\xi = \begin{pmatrix} 25 & 80 & 150 \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

6 / 54

 $\Rightarrow~~1/3$ of the total observations at each point $~25,\,80$ and 150

- $m = 30 \rightarrow 10, 10, 10$
- $m = 40 \rightarrow 13, 14, 13$

Measuring the quality of designs

• Weighted least squares estimator: $\hat{\theta}$

$$\Rightarrow {\sf Cov}(\hat{ heta}) \sim rac{1}{m} M^{-1}(\xi)$$

where

$$M(\xi) = \int_{\mathcal{X}} \frac{1}{\sigma^{2}(x,\theta)} \left(\frac{\partial \eta(x,\theta)}{\partial \theta}\right)^{T} \frac{\partial \eta(x,\theta)}{\partial \theta} + \frac{1}{2\sigma^{4}(x,\theta)} \left(\frac{\partial \sigma^{2}(x,\theta)}{\partial \theta}\right)^{T} \frac{\partial \sigma^{2}(x,\theta)}{\partial \theta} d\xi(x)$$

denotes the **information matrix** of the design ξ (this measure refers to the normality assumption).

Measuring the quality of designs

• Weighted least squares estimator: $\hat{\theta}$

$$\Rightarrow {\sf Cov}(\hat{ heta}) \sim rac{1}{m} M^{-1}(\xi)$$

where

$$M(\xi) = \int_{\mathcal{X}} \frac{1}{\sigma^{2}(x,\theta)} \left(\frac{\partial \eta(x,\theta)}{\partial \theta}\right)^{T} \frac{\partial \eta(x,\theta)}{\partial \theta} + \frac{1}{2\sigma^{4}(x,\theta)} \left(\frac{\partial \sigma^{2}(x,\theta)}{\partial \theta}\right)^{T} \frac{\partial \sigma^{2}(x,\theta)}{\partial \theta} d\xi(x)$$

denotes the **information matrix** of the design ξ (this measure refers to the normality assumption).

Goal:

Maximize M(ξ) w.r.t. the choice of the design ξ (impossible!!)

Optimality criteria

- Only a partial ordering in the space of nonnegative definite matrices
- Maximize real valued (statistical meaningful) functions of $M(\xi) \rightarrow$ optimality criteria

Optimality criteria

- Only a partial ordering in the space of nonnegative definite matrices
- Maximize real valued (statistical meaningful) functions of $M(\xi) \rightarrow$ optimality criteria
- The application determines the criterion
 - c-optimality (MED-estimation)

$$\xi^* = \arg \max_{\xi} (c^T M^{-1}(\xi) c)^{-1}$$

where c is a vector determined by the regression model.

• *D*-**optimality** (precise estimation of all parameters)

 $\xi^* = \arg \max_{\xi} |M(\xi)|$

In this talk we will only consider *D*-optimal designs and polynomial models!

8 / 54

Classical (weigthed) polynomial regression model

• Polynomial regression model $[\theta = (\theta_0, \dots, \theta_{n-1})^T$, $x \in (-\infty, \infty)]$

$$\eta(x,\theta) = \sum_{j=0}^{n-1} \theta_j x^j$$

 $\sigma^2(x,\theta) = e^{x^2}$

• Example: n = 2, linear regression model (with heteroscedastic error)

• $\frac{\partial}{\partial \theta} \eta(x, \theta) = (1, x, \dots, x^{n-1})^T, \quad \frac{\partial}{\partial \theta} \sigma^2(x, \theta) = 0$

・ロ ・ ・ (日 ・ ・ 注 ・ く 注 ・ 注 ・ つ Q ()
9/54

D-optimal design problem (weighted polynomial regression)

A D-optimal design maximizes the determinant

$$|M(\xi)| = \left| \left(\int_{\mathbb{R}} x^{i+j} e^{-x^2} d\xi(x) \right)_{i,j=0,\dots,n-1} \right|$$

=
$$\left| \begin{array}{c} \int_{\mathbb{R}} e^{-x^2} d\xi(x) & \int_{\mathbb{R}} x e^{-x^2} d\xi(x) & \dots & \int_{\mathbb{R}} x^{n-1} e^{-x^2} d\xi(x) \\ \int_{\mathbb{R}} x e^{-x^2} d\xi(x) & \int_{\mathbb{R}} x^2 e^{-x^2} d\xi(x) & \dots & \int_{\mathbb{R}} x^n e^{-x^2} d\xi(x) \\ \vdots & \ddots & \ddots & \vdots \\ \int_{\mathbb{R}} x^{n-1} e^{-x^2} d\xi(x) & \int_{\mathbb{R}} x^2 e^{-x^2} d\xi(x) & \dots & \int_{\mathbb{R}} x^{2n-2} e^{-x^2} d\xi(x) \end{array} \right|$$

in the class of all probability measures of \mathbb{R} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

D-optimal design problem

Theorem 1: The *D*-optimal design ξ^* is a uniform distribution on the set

$$\left\{z \mid H_n(z) = 0\right\}$$

where H_n denotes the *n*-th Hermite polynomial, orthogonal with respect to the measure

$$e^{-x^2}dx$$

Two Proofs:

- Equivalence theorems (from design theory) and second order differential equations (Stieltjes)
- Moment theory

• Equivalence theorem for *D*-optimality (Kiefer and Wolfowitz, 1960): ξ^* is *D*-optimal if and only if

 $\forall x \in \mathbb{R} \ e^{-x^2}(1, x, \dots, x^{n-1})M^{-1}(\xi^*)(1, x, \dots, x^{n-1})^T \leq n$

Moreover, there is equality for all support points of the *D*-optimal design.

• Equivalence theorem for *D*-optimality (Kiefer and Wolfowitz, 1960): ξ^* is *D*-optimal if and only if

 $\forall x \in \mathbb{R} \ e^{-x^2}(1, x, \dots, x^{n-1})M^{-1}(\xi^*)(1, x, \dots, x^{n-1})^T \leq n$

Moreover, there is equality for all support points of the *D*-optimal design.

- **Example:** weighted polynomial regression of degree 7 (n = 8)
 - D-optimal design (solid curve)
 - Equidistant design on 10 points in the interval [-4, 4]
 - Note: D-optimal design has 8 support points (saturated)

• Equivalence theorem for *D*-optimality: ξ^* is *D*-optimal if and only if

 $\forall x \in \mathbb{R} \ e^{-x^2}(1, x, \dots, x^{n-1})M^{-1}(\xi^*)(1, x, \dots, x^{n-1})^T \leq n$

Moreover, there is equality for all support points of the *D*-optimal design.
The optimal design has *n* support points

$$\Rightarrow \quad \xi^* = \left(\begin{array}{ccc} x_1 & x_2 & \dots & x_n \\ w_1 & w_2 & \dots & w_n \end{array}\right)$$

٠

• Equivalence theorem for *D*-optimality: ξ^* is *D*-optimal if and only if

 $\forall x \in \mathbb{R} \ e^{-x^2}(1, x, \dots, x^{n-1})M^{-1}(\xi^*)(1, x, \dots, x^{n-1})^T \leq n$

Moreover, there is equality for all support points of the *D*-optimal design.
The optimal design has *n* support points

$$\Rightarrow \quad \xi^* = \left(\begin{array}{ccc} x_1 & x_2 & \dots & x_n \\ w_1 & w_2 & \dots & w_n \end{array}\right)$$

Proof; Step 2 (idea): identification of the support

Let

$$f(x) = (x - x_1) \dots (x - x_n)$$

denote the supporting polynomial.

• The necessary condition for an extremum yields a system of *n* non-linear equations

 $f''(x_j) - 2x_j f'(x_j) = 0$ j = 1, ... n

14 / 54

Proof; Step 2 (idea): identification of the support

Let

$$f(x) = (x - x_1) \dots (x - x_n)$$

denote the supporting polynomial.

• The necessary condition for an extremum yields a system of *n* non-linear equations

$$f''(x_j) - 2x_j f'(x_j) = 0$$
 $j = 1, ... n$

• Derive a differential equation for the supporting polynomial

$$f''(x) - 2xf'(x) = -2nf(x)$$

• This differential equation has exactly one polynomial solution

$$f(x) = cH_n(x)$$

14/54

Weak asymptotics of roots of Hermite polynomials:

• Theorem 2:

$$\xi_n^*((0,t]) = \frac{1}{n} \# \left\{ z \le t \mid H_n(\sqrt{n}z) = 0 \right\}$$

If $n\to\infty,$ then : ξ_n^* converges weakly to an absolute continuous measure μ^* with density

$$\frac{d\mu^*}{dx} = \frac{1}{\pi}\sqrt{2-x^2}I_{[-\sqrt{2},\sqrt{2}]}(x)$$

• μ^* is called the Wigner semi-circle law

Proof (idea):

 Use the differential equation for Hermite polynomials to derive a recurrence relation for the moments of the uniform distribution ξ^{*}_n on the set

$$\left\{ z \leq t \mid H_n(\sqrt{n}z) = 0 \right\}$$

that is

$$\mu_{2\mathbf{r},\mathbf{n}} = \frac{1}{2} \left\{ \sum_{\nu=0}^{\mathbf{r}-1} \mu_{2\mathbf{r}-2\nu-2,\mathbf{n}} \mu_{2\nu,\mathbf{n}} - \frac{2\mathbf{r}-1}{\mathbf{n}} \mu_{2\mathbf{r}-2,\mathbf{n}} \right\}$$

• Recurrence relation in the limit $(n o \infty)$

$$\mu_{2\mathbf{r}}^{*} = \frac{1}{2} \sum_{\nu=0}^{\mathbf{r}-1} \mu_{2\mathbf{r}-2\nu-2}^{*} \mu_{2\nu}^{*}$$

• Identify the moments and the limit distribution

$$\mu_{2r}^* = \frac{1}{r+1} \left(\frac{1}{2}\right)^r {\binom{2r}{r}} = \frac{1}{\pi} \int_{-\sqrt{2}}^{\sqrt{2}} x^{2r} \sqrt{2-x^2} dx$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Elementary random matrix theory

- $M_n \in \mathbb{R}^{n \times n}$ symmetric matrix with i.i.d. entries $M_n(i,j) \sim \mathcal{N}(0,\frac{1}{2})$
- **Problem:** location of the eigenvalues of the random matrix M_n ?

Elementary random matrix theory

- $M_n \in \mathbb{R}^{n \times n}$ symmetric matrix with i.i.d. entries $M_n(i,j) \sim \mathcal{N}(0,\frac{1}{2})$
- **Problem:** location of the eigenvalues of the random matrix M_n ?
- The joint density of the (random) eigenvalues λ₁ ≤ λ₂ ≤ ... ≤ λ_n of the matrix M_n is given by

$$\mathbf{h}(\lambda) = \mathbf{c} \prod_{1 \le i < j \le n} |\lambda_i - \lambda_j| \prod_{i=1}^n \mathbf{e}^{-\frac{\lambda_i^2}{2}} ,$$

• (Maximum likelihood) Typical locations are the points where the density is maximal!

Elementary random matrix theory

- $M_n \in \mathbb{R}^{n \times n}$ symmetric matrix with i.i.d. entries $M_n(i,j) \sim \mathcal{N}(0,\frac{1}{2})$
- **Problem:** location of the eigenvalues of the random matrix M_n ?
- The joint density of the (random) eigenvalues λ₁ ≤ λ₂ ≤ ... ≤ λ_n of the matrix M_n is given by

$$\mathbf{h}(\lambda) = \mathbf{c} \prod_{1 \leq i < j \leq n} |\lambda_i - \lambda_j| \prod_{i=1}^n \mathbf{e}^{-\frac{\lambda_i^2}{2}} ,$$

- (Maximum likelihood) Typical locations are the points where the density is maximal!
- *D*-optimal design theory tells us: look at roots of the Hermite polynomial $H_n(z)$
- Note: If $n \to \infty$ the roots of $H_n(\sqrt{nz})$ become dense in $[-\sqrt{2}, \sqrt{2}]$.

Semi-circle law for the Gaussian ensemble

Theorem 3 Let $\lambda_1^{(n)} \le \lambda_2^{(n)} \le \ldots \le \lambda_n^{(n)}$ denote the eigenvalues of the random matrix

$$\frac{1}{\sqrt{n}}M_n$$

and by

$$\mu_n = \frac{1}{n} \sum_{j=1}^n \delta_{\lambda_j^{(n)}}$$

the empirical eigenvalue distribution (δ_x is the Dirac measure), then for any $t \in [-\sqrt{2}, \sqrt{2}]$

$$\lim_{n\to\infty}\mu_n((-\sqrt{2},t]) = \frac{1}{\pi}\int_{-\sqrt{2}}^t \sqrt{2-x^2}dx \quad a.s.$$

Eigenvalues of a 5000 \times 5000 matrix

Figure: Left panel: histogram of the simulated eigenvalues. Right panel: asymptotic distribution

> ・ロ ・ ・ 日 ・ ・ 三 ・ ・ 三 ・ ク へ や 19/54

Eigenvalues of a 5000 \times 5000 matrix

Figure: Histogram of the simulated eigenvalues and the asymptotic distribution

β -ensembles

• The β -ensemble ($\beta > 0$) is defined by the density

$$\mathbf{h}(\lambda) = \mathbf{c} \prod_{1 \le i < j \le n} |\lambda_i - \lambda_j|^{\beta} \prod_{i=1}^n \mathbf{e}^{-\frac{\lambda_i^2}{2}}, \qquad (1)$$

Density of the eigenvalues of a $n \times n$ matrix with normally distributed random variables [Dyson (1962)], where

- $\beta = 1$: real entries
- $\beta = 2$: complex entries
- $\beta = 4$: quaternion entries

β -ensembles

• The β -ensemble ($\beta > 0$) is defined by the density

$$\mathbf{h}(\lambda) = \mathbf{c} \prod_{1 \le i < j \le n} |\lambda_i - \lambda_j|^{\beta} \prod_{i=1}^n \mathbf{e}^{-\frac{\lambda_i^2}{2}}, \qquad (1)$$

Density of the eigenvalues of a $n \times n$ matrix with normally distributed random variables [Dyson (1962)], where

- $\begin{array}{ll} \beta = 1; & \text{real entries} \\ \beta = 2; & \text{complex entries} \\ \beta = 4; & \text{quaternion entries} \end{array}$
- Is there any random matrix whose eigenvalue distribution is given by (1) for any $\beta > 0$?

β -ensembles

• The β -ensemble ($\beta > 0$) is defined by the density

$$\mathbf{h}(\lambda) = \mathbf{c} \prod_{1 \le i < j \le n} |\lambda_i - \lambda_j|^{\beta} \prod_{i=1}^n \mathbf{e}^{-\frac{\lambda_i^2}{2}}, \qquad (1)$$

Density of the eigenvalues of a $n \times n$ matrix with normally distributed random variables [Dyson (1962)], where

- $\begin{array}{ll} \beta = 1 \colon & \mbox{real entries} \\ \beta = 2 \colon & \mbox{complex entries} \\ \beta = 4 \colon & \mbox{quaternion entries} \end{array}$
- Is there any random matrix whose eigenvalue distribution is given by (1) for any $\beta > 0$?
- The answer is positive [Dumitriu and Edelman, 2004]
- The matrix can be chosen in a tridiagonal form (Householder transformations)!

Tridiagonal matrix representation for the β -ensemble

$$G_{n}^{(1)} = \frac{1}{\sqrt{2}} \begin{bmatrix} \sqrt{2}N_{1} & \mathcal{X}_{(n-1)\beta} \\ \mathcal{X}_{(n-1)\beta} & \sqrt{2}N_{2} & \mathcal{X}_{(n-2)\beta} \\ & \ddots & \ddots & \ddots \\ & & \mathcal{X}_{2\beta} & \sqrt{2}N_{n-1} & \mathcal{X}_{\beta} \\ & & & \mathcal{X}_{\beta} & \sqrt{2}N_{n} \end{bmatrix}$$

Note:

- N_1, N_2, \ldots, N_n are standard normal distributed $(N_j \sim \mathcal{N}(0, 1))$
- For j = 1,..., n − 1 the random variable X²_{jβ} is chi-square distributed with "jβ degrees of freedom" (X²_{iβ} ~ χ²(jβ))
- All random variables are independent

Eigenvalues are "close" to roots of orthogonal polynomials

Theorem 4: [D., Imhof, 2007] If

$$\lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \ldots \leq \lambda_n^{(n)}$$

denote the eigenvalues of the matrix $\frac{1}{\sqrt{n}}G_n^{(1)}$ and

$$\xi_1^{(n)} < \xi_2^{(n)} < \cdots < \xi_n^{(n)}$$

denote the zeros of the polynomial $H_n(\sqrt{n\beta}z)$, then $(n \to \infty)$

$$\max_{1\leq j\leq n}|\lambda_j^{(n)}-\xi_j^{(n)}|=O\Big(\Big(\frac{\log n}{n}\Big)^{1/2}\Big)\quad a.s.$$

• Expectation of chi-square distribution $\mathbf{E}[\mathcal{X}_{i\beta}^2] = \mathbf{j}\beta$. Approximate

 $\mathbf{E}[\mathcal{X}_{\mathbf{j}\beta}]\approx\sqrt{\mathbf{j}\beta}$

• Consider the (non-random) matrix

$$E[G_n^{(1)}] \approx F_n = \sqrt{\frac{\beta}{2}} \begin{bmatrix} 0 & \sqrt{n-1} & & \\ \sqrt{n-1} & 0 & \sqrt{n-2} & \\ & \ddots & \ddots & \ddots & \\ & & \sqrt{2} & 0 & 1 \\ & & & & 1 & 0 \end{bmatrix}$$
(2)

• Note: by the three term recurrence relation for Hermite polynomials we have:

$$\det(\mathbf{x}\mathbf{I}_{n} - \mathbf{F}_{n}) = \left(\frac{\sqrt{\beta}}{2}\right)^{\mathbf{x}} \mathbf{H}_{n}\left(\frac{\mathbf{x}}{\sqrt{\beta}}\right)$$

- $\lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \ldots \leq \lambda_n^{(n)}$: eigenvalues of the matrix $\frac{1}{\sqrt{n}} G_n^{(1)}$
- $\xi_1^{(n)} < \cdots < \xi_n^{(n)}$: roots of the polynomial $H_n(\sqrt{n\beta}z)$
- Weyl's inequality

$$\sqrt{n} \max_{1 \le j \le n} |\lambda_j^{(n)} - \xi_j^{(n)}| \le \|G_n^{(1)} - F_n\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |(G_n^{(1)} - F_n)_{ij}|$$

- $\lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \ldots \leq \lambda_n^{(n)}$: eigenvalues of the matrix $\frac{1}{\sqrt{n}} G_n^{(1)}$
- $\xi_1^{(n)} < \cdots < \xi_n^{(n)}$: roots of the polynomial $H_n(\sqrt{n\beta}z)$
- Weyl's inequality

$$\sqrt{n} \max_{1 \le j \le n} |\lambda_j^{(n)} - \xi_j^{(n)}| \le \|G_n^{(1)} - F_n\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |(G_n^{(1)} - F_n)_{ij}|$$

Large deviations:

$$P\left\{\frac{|\mathcal{X}_{j\beta}-\sqrt{j\beta}|}{\sqrt{2}} \ge \frac{\epsilon}{3}\right\} \le 2e^{-\epsilon^2/9}, \quad P\left\{|\mathcal{N}_j| \ge \frac{\epsilon}{3}\right\} \le 2e^{-\epsilon^2/18}$$
$$\implies P\left\{\max_{1\le j\le n} \left|\lambda_j^{(n)} - \xi_j^{(n)}\right| \ge \epsilon\right\} \le 4ne^{-n\beta\epsilon^2/9}$$

- $\lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \ldots \leq \lambda_n^{(n)}$: eigenvalues of the matrix $\frac{1}{\sqrt{n}} G_n^{(1)}$
- $\xi_1^{(n)} < \cdots < \xi_n^{(n)}$: roots of the polynomial $H_n(\sqrt{n\beta}z)$
- Weyl's inequality

$$\sqrt{n} \max_{1 \le j \le n} |\lambda_j^{(n)} - \xi_j^{(n)}| \le \|G_n^{(1)} - F_n\|_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^n |(G_n^{(1)} - F_n)_{ij}|$$

Large deviations:

$$P\left\{\frac{|\mathcal{X}_{j\beta}-\sqrt{j\beta}|}{\sqrt{2}} \ge \frac{\epsilon}{3}\right\} \le 2e^{-\epsilon^2/9}, \quad P\left\{|\mathcal{N}_j| \ge \frac{\epsilon}{3}\right\} \le 2e^{-\epsilon^2/18}$$
$$\implies P\left\{\max_{1\le j\le n} \left|\lambda_j^{(n)} - \xi_j^{(n)}\right| \ge \epsilon\right\} \le 4ne^{-n\beta\epsilon^2/9}$$

Borel Cantelli

$$\max_{1 \le j \le n} |\lambda_j^{(n)} - \xi_j^{(n)}| = O\left(\left(\frac{\log n}{n}\right)^{1/2}\right) \quad a.s.$$

25 / 54

Idea of a proof of Theorem 3 ($\beta = 1$)

- The random eigenvalues of the matrix $\frac{1}{\sqrt{n}}G_n^{(1)}$ can be (uniformly, almost surely) approximated by roots of the Hermite polynomial $H_n(\sqrt{n\beta}z)$.
- The uniform distribution on the roots Hermite polynomial $H_n(\sqrt{n\beta z})$ converges weakly to Wigner's semi-circle law.
- The empirical eigenvalue distribution of the random matrix $\frac{1}{\sqrt{n}}G_n^{(1)}$ converges weakly to Wigner's semi-circle law (almost surely).

Random band matrices - tridiagonal (r = 1 , $\beta_1 > 0$)

$$G_n^{(1)} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} N_1 & \chi_{(n-1)\beta_1} & & \\ \chi_{(n-1)\beta_1} & \sqrt{2} N_2 & \chi_{(n-2)\beta_1} & & \\ & \chi_{(n-2)\beta_1} & \sqrt{2}N_3 & \chi_{(n-3)\beta_1} & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots & \ddots & \ddots \end{pmatrix}$$

All random variables are independent!

Random 5-band matrices (r = 2, $\beta_1, \beta_2 > 0$)

All random variables are independent!

<ロ><回><日><日><日><日><日><日><日><日><日><日><日><日</td>28/54

Random 7-band matrices (r = 3, $\beta_1, \beta_2, \beta_3 > 0$)

$$G_n^{(3)} =$$

All random variables are independent!

Random 2r + 1 band matrices $(\beta_1, \ldots, \beta_r > 0)$

$$\sqrt{2}G_n^{(r)} =$$

Random band matrices

5-band and tridiagonal block matrices (2 imes 2 blocks)

 $G_n^{(2)} =$

7-band and tridiagonal block matrices (3 \times 3 blocks)

 $G_n^{(3)} =$

,

$$\begin{pmatrix} \sqrt{2} \ N_1 & \mathcal{X}_{(n-1)\beta_1} & \mathcal{X}_{(n-2)\beta_2} & \mathcal{X}_{(n-3)\beta_3} & 0 & 0 \\ \mathcal{X}_{(n-1)\beta_1} & \sqrt{2} \ N_2 & \mathcal{X}_{(n-2)\beta_1} & \mathcal{X}_{(n-3)\beta_2} & \mathcal{X}_{(n-4)\beta_3} & 0 \\ \mathcal{X}_{(n-2)\beta_2} & \mathcal{X}_{(n-2)\beta_1} & \sqrt{2}N_3 & \mathcal{X}_{(n-3)\beta_1} & \mathcal{X}_{(n-4)\beta_2} & \mathcal{X}_{(n-5)\beta_3} \\ \mathcal{X}_{(n-3)\beta_3} & \mathcal{X}_{(n-3)\beta_2} & \mathcal{X}_{(n-3)\beta_1} & \sqrt{2}N_4 & \mathcal{X}_{(n-4)\beta_1} & \mathcal{X}_{(n-5)\beta_2} \\ 0 & \mathcal{X}_{(n-4)\beta_3} & \mathcal{X}_{(n-4)\beta_2} & \mathcal{X}_{(n-4)\beta_1} & \sqrt{2}N_5 & \mathcal{X}_{(n-5)\beta_1} \\ 0 & 0 & \mathcal{X}_{(n-5)\beta_3} & \mathcal{X}_{(n-5)\beta_2} & \mathcal{X}_{(n-5)\beta_1} & \sqrt{2}N_6 \\ \end{pmatrix}$$

 2r + 1-band and tridiagonal block matrices ($r \times r$ blocks)

$$G_{n}^{(r)} = \begin{pmatrix} B_{0} & A_{1} & & & \\ A_{1}^{T} & B_{1} & A_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & A_{m-2}^{T} & B_{m-2} & A_{m-1} \\ & & & & A_{m-1}^{T} & B_{m-1} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

where

- n = mr
- B_i are symmetric random matrices
- A_i are lower random triangular matrices

Problem: location of the eigenvalues?

• Matrix polynomials [Krein (1969), Damanik, Killip, Pushnitski, Simon (2008,2010)]

$$P_n(x) = D_n x^n + D_{n-1} x^{n-1} + \ldots + D_1 x + D_0$$

where D_0, \ldots, D_n are $r \times r$ matrices with real entries

• Example:

$$P_3(x) = \left(\begin{array}{cc} x^3 + x - 1 & 2x + 1 \\ x - 1 & 3x^2 \end{array} \right)$$

• Matrix polynomials [Krein (1969), Damanik, Killip, Pushnitski, Simon (2008,2010)]

$$P_n(x) = D_n x^n + D_{n-1} x^{n-1} + \ldots + D_1 x + D_0$$

where D_0, \ldots, D_n are $r \times r$ matrices with real entries

• Example:

$$P_3(x) = \left(\begin{array}{cc} x^3 + x - 1 & 2x + 1 \\ x - 1 & 3x^2 \end{array} \right)$$

- Roots of a matrix polynomial are defined by det $P_n(x) = 0$
- Matrix measure ψ is a matrix of signed Borel measures on the real line such for any Borel set A the matrix ψ(A) is nonnegative definite (spectral measure of multivariate stationary processes)
- ullet "Inner product" with respect to the matrix measure ψ

$$\langle P_n, P_m \rangle := \int_{\mathbb{R}} P_n(x) d\psi(x) P_m^T(x) \in \mathbb{R}^{r \times r}$$

34 / 54

・ロト ・ 同ト ・ ヨト ・ ヨト ・ シック

• Matrix polynomials are called orthonormal if and only if

$$\langle P_n, P_m \rangle = \delta_{n,m} I_r \in \mathbb{R}^{r \times r}$$

• Some properties of the scalar case are still valid

- All roots of orthogonal matrix polynomials are real
- **Favard's Theorem:** $\{P_n\}_{n\in\mathbb{N}}$ defines a sequence of matrix orthonormal polynomials if and only

 $\mathbf{x}\mathbf{P}_n(\mathbf{x}) = \mathbf{A}_{n+1}\mathbf{P}_{n+1}(\mathbf{x}) + \mathbf{B}_n\mathbf{P}_n(\mathbf{x}) + \mathbf{A}_n^\mathsf{T}\mathbf{P}_{n-1}(\mathbf{x}), \qquad n \geq 0,$

for symmetric matrices B_n and arbitrary non singular matrices A_n [D. and Studden (2002)]

- Matrix multiplication is not commutative
- Orthonormal matrix polynomials are **not** uniquely determined
- The roots of matrix orthogonal polynomials are **not** interlacing
- Characterization of the boundary of the moment space corresponding to matrix measures?
- There exists no example of matrix orthogonal polynomials, which has been completely understood

- Matrix multiplication is not commutative
- Orthonormal matrix polynomials are **not** uniquely determined
- The roots of matrix orthogonal polynomials are **not** interlacing
- Characterization of the boundary of the moment space corresponding to matrix measures?
- There exists no example of matrix orthogonal polynomials, which has been completely understood
 - Example: Scalar Chebyshev polynomials (first kind)

$$T_{-1}(x) = 0$$
, $T_0(x) = 1$, $T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$

- Trigonometric representation: $T_n(x) = \cos(n \arccos x)$
- Measure of orthogonality: arcsine distribution with density

$$\frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} I_{[-1,1]}(x)$$

36 / 54

Excursion: matrix Chebyshev polynomials

- $A \in \mathbb{R}^{r imes r}$ non singular; $B \in \mathbb{R}^{r imes r}$ symmetric
- Recurrence relation $T_0^{A,B}(x) = I_p$,

$$T_1^{A,B}(x) = (\sqrt{2}A)^{-1}(xI_p - B)$$

$$xT_1^{A,B}(x) = AT_2^{A,B}(x) + BT_1^{A,B}(x) + \sqrt{2}A^T T_0^{A,B}(x)$$

 $xT_{n}^{A,B}(x) = AT_{n+1}^{A,B}(x) + BT_{n}^{A,B}(x) + A^{T}T_{n-1}^{A,B}(x), n \ge 2,$

• If *r* = 1 the measure of orthogonality is given by a linear transformation of the arcsine distribution with density

$$\frac{1}{\pi} \frac{1}{\sqrt{1-x^2}} I_{[-1,1]}(x)$$

• Open problem: The matrix measure $X_{A,B}$ of orthogonality in the case r > 1 ?

Return to random of block matrices

We are interested in the eigenvalues of the matrix

$$G_{n}^{(r)} = \begin{pmatrix} B_{0} & A_{1} & & & \\ A_{1}^{T} & B_{1} & A_{2} & & \\ & \ddots & \ddots & \ddots & \\ & & A_{m-2}^{T} & B_{m-2} & A_{m-1} \\ & & & & A_{m-1}^{T} & B_{m-1} \end{pmatrix} \in \mathbb{R}^{n \times n}$$

where

- n = mr
- *B_i* are symmetric random matrices
- A_i are lower random triangular matrices

Problem: location of the eigenvalues?

The structure of the blocks $(r \times r)$

$$B_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2}N_{ir+1} & \mathcal{X}_{(n-ir-1)\beta_{1}} & \cdots & \mathcal{X}_{(n-(i+1)r+1)\beta_{r-1}} \\ \mathcal{X}_{(n-ir-1)\beta_{1}} & \sqrt{2}N_{ir+2} & \cdots & \mathcal{X}_{(n-(i+1)r+1)\beta_{r-2}} \end{pmatrix}$$

$$\vdots & \ddots & \ddots & \vdots \\ \mathcal{X}_{(n-(i+1)r+1)\beta_{r-1}} & \cdots & \mathcal{X}_{(n-(i+1)r+1)\beta_{1}} & \sqrt{2}N_{(i+1)r} \end{pmatrix}$$

$$A_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathcal{X}_{(n-ir)\beta_{r}} & 0 & 0 & \cdots & 0 \\ \mathcal{X}_{(n-ir)\beta_{r-1}} & \mathcal{X}_{(n-ir-1)\beta_{r}} & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \mathcal{X}_{(n-ir)\beta_{1}} & \mathcal{X}_{(n-ir-1)\beta_{r-1}} & \cdots & \mathcal{X}_{(n-(i+1)r+1)\beta_{r}} \end{pmatrix},$$

The structure of the blocks in the case r = 3:

$$B_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} N_{3i+1} & \mathcal{X}_{(n-3i-1)\beta_{1}} & \mathcal{X}_{(n-3i-2)\beta_{2}} \\ \mathcal{X}_{(n-3i-1)\beta_{1}} & \sqrt{2} N_{3i+2} & \mathcal{X}_{(n-3i-2)\beta_{1}} \\ \mathcal{X}_{(n-3i-2)\beta_{2}} & \mathcal{X}_{(n-3i-2)\beta_{1}} & \sqrt{2}N_{3i+3} \end{pmatrix}$$

$$A_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \chi_{(n-3i)\beta_{3}} & 0 & 0 \\ \chi_{(n-3i)\beta_{2}} & \chi_{(n-3i-1)\beta_{3}} & 0 \\ \chi_{(n-3i)\beta_{1}} & \chi_{(n-3i-1)\beta_{2}} & \chi_{(n-3i-2)\beta_{3}} \end{pmatrix}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The structure of the blocks in the case r = 3:

$$B_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \sqrt{2} N_{3i+1} & \mathcal{X}_{(n-3i-1)\beta_{1}} & \mathcal{X}_{(n-3i-2)\beta_{2}} \\ \mathcal{X}_{(n-3i-1)\beta_{1}} & \sqrt{2} N_{3i+2} & \mathcal{X}_{(n-3i-2)\beta_{1}} \\ \mathcal{X}_{(n-3i-2)\beta_{2}} & \mathcal{X}_{(n-3i-2)\beta_{1}} & \sqrt{2}N_{3i+3} \end{pmatrix}$$

$$A_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \mathcal{X}_{(n-3i)\beta_{3}} & 0 & 0 \\ \mathcal{X}_{(n-3i)\beta_{2}} & \mathcal{X}_{(n-3i-1)\beta_{3}} & 0 \\ \mathcal{X}_{(n-3i)\beta_{1}} & \mathcal{X}_{(n-3i-1)\beta_{2}} & \mathcal{X}_{(n-3i-2)\beta_{3}} \end{pmatrix}$$

Note: in the following discussion we will explain the structure always in the case r = 3!

Eigenvalues of block matrices and roots of polynomials

Theorem 5: [D., Reuther, 2010] Let

$$\lambda_1^{(n)} \leq \lambda_2^{(n)} \leq \ldots \leq \lambda_n^{(n)}$$

denote the eigenvalues of the random block matrix

then as $n \to \infty$:

$$\max_{1\leq j\leq n}|\lambda_j^{(n)}-\xi_j^{(n)}|=O\Big(\Big(\frac{\log n}{n}\Big)^{1/2}\Big)\quad a.s.$$

where

$$\xi_1^{(n)} \leq \xi_2^{(n)} \leq \ldots \leq \xi_n^{(n)}$$

are the roots of the m=(n/r)th matrix orthonormal polynomial $R_{m,n}(x)$ defined by $R_{-1,n}(x)=0,\ R_{0,n}(x)=I_r$

$$\mathbf{x}\mathbf{R}_{\mathbf{k},\mathbf{n}}(\mathbf{x}) = \mathbf{A}_{\mathbf{k}+\mathbf{1},\mathbf{n}}\mathbf{R}_{\mathbf{k}+\mathbf{1},\mathbf{n}}(\mathbf{x}) + \mathbf{B}_{\mathbf{k},\mathbf{n}}\mathbf{R}_{\mathbf{k},\mathbf{n}}(\mathbf{x}) + \mathbf{A}_{\mathbf{k},\mathbf{n}}^{\mathsf{T}}\mathbf{R}_{\mathbf{k}-\mathbf{1},\mathbf{n}}(\mathbf{x}); \quad \mathbf{k} \ge \mathbf{0},$$

Coefficients in the recurrence relation (here for r = 3):

$$\mathbf{A_{k,n}} = \frac{1}{\sqrt{2n}} \begin{pmatrix} \sqrt{(3k-2)\beta_3} & 0 & 0\\ \sqrt{(3k-1)\beta_2} & \sqrt{(3k-1)\beta_3} & 0\\ \sqrt{3k\beta_1} & \sqrt{3k\beta_2} & \sqrt{3k\beta_3} \end{pmatrix}$$

$$\mathbf{B_{k,n}} = \frac{1}{\sqrt{2n}} \begin{pmatrix} 0 & \sqrt{(3k+1)\beta_1} & \sqrt{(3k+1)\beta_2} \\ \sqrt{(3k+1)\beta_1} & 0 & \sqrt{(3k+2)\beta_1} \\ \sqrt{(3k+1)\beta_2} & \sqrt{3k+2\beta_1} & 0 \end{pmatrix}$$

Coefficients in the recurrence relation (here for r = 3): Note: If $n \to \infty$ and $\frac{k}{n} \to u \in (0, 1)$, then

$$\mathbf{A_{k,n}} = \frac{1}{\sqrt{2n}} \begin{pmatrix} \sqrt{(3k-2)\beta_3} & 0 & 0\\ \sqrt{(3k-1)\beta_2} & \sqrt{(3k-1)\beta_3} & 0\\ \sqrt{3k\beta_1} & \sqrt{3k\beta_2} & \sqrt{3k\beta_3} \end{pmatrix} \\ \longrightarrow A(u) := \sqrt{\frac{3u}{2}} \begin{pmatrix} \sqrt{\beta_3} & 0 & 0\\ \sqrt{\beta_2} & \sqrt{\beta_3} & 0\\ \sqrt{\beta_1} & \sqrt{\beta_2} & \sqrt{\beta_3} \end{pmatrix}$$

43 / 54

Matrix orthogonal polynomials with varying coefficients

• **Problem:** For $n \in \mathbb{N}$ let $\{R_{k,n}(x)\}_{k \in \mathbb{N}_0}$ denote a sequence of matrix orthonormal polynomials defined by $\mathbf{R}_{-1,n}(\mathbf{x}) = \mathbf{0}_r$, $\mathbf{R}_{\mathbf{0},n}(\mathbf{x}) = \mathbf{I}_r$

$$\mathbf{x} \mathbf{R}_{k,n}(\mathbf{x}) = \mathbf{A}_{k+1,n} \mathbf{R}_{k+1,n}(\mathbf{x}) + \mathbf{B}_{k,n} \mathbf{R}_{k,n}(\mathbf{x}) + \mathbf{A}_{k,n}^{\mathsf{T}} \mathbf{R}_{k-1,n}(\mathbf{x}); \quad k \geq \mathbf{0},$$

where

$$\lim_{\frac{k}{n}\to u} \mathbf{B}_{\mathbf{k},\mathbf{n}} = \mathbf{B}(\mathbf{u}), \quad \lim_{\frac{k}{n}\to u} \mathbf{A}_{\mathbf{k},\mathbf{n}} = \mathbf{A}(\mathbf{u})$$

whenever $u \in (0, 1)$. What is the behavior of the roots of the polynomials

$$\mathbf{Q}_{\mathbf{k},\mathbf{n}}(\mathbf{x})$$

44 / 54

if $n \to \infty$?

Matrix orthogonal polynomials with varying coefficients

• **Problem:** For $n \in \mathbb{N}$ let $\{R_{k,n}(x)\}_{k \in \mathbb{N}_0}$ denote a sequence of matrix orthonormal polynomials defined by $\mathbf{R}_{-1,n}(\mathbf{x}) = \mathbf{0}_r$, $\mathbf{R}_{\mathbf{0},n}(\mathbf{x}) = \mathbf{I}_r$

$$\mathbf{x} \mathbf{R}_{k,n}(\mathbf{x}) = \mathbf{A}_{k+1,n} \mathbf{R}_{k+1,n}(\mathbf{x}) + \mathbf{B}_{k,n} \mathbf{R}_{k,n}(\mathbf{x}) + \mathbf{A}_{k,n}^{\mathsf{T}} \mathbf{R}_{k-1,n}(\mathbf{x}); \quad k \geq \mathbf{0},$$

where

$$\lim_{\frac{k}{n}\to u} \mathbf{B}_{\mathbf{k},\mathbf{n}} = \mathbf{B}(\mathbf{u}), \quad \lim_{\frac{k}{n}\to u} \mathbf{A}_{\mathbf{k},\mathbf{n}} = \mathbf{A}(\mathbf{u})$$

whenever $u \in (0, 1)$. What is the behavior of the roots of the polynomials

$$\mathbf{Q}_{\mathbf{k},\mathbf{n}}(\mathbf{x})$$

if $n \to \infty$?

• Note: By Theorem 5 we expect that the eigenvalues of the random band matrix have similar properties $(k = m; n = mr \rightarrow u = 1/r)!$

An algebraic equation (Widom, 1974)

Define the equation $(x, z \in \mathbb{C})$

$$\mathbf{0} = f_u(z, \mathbf{x}) := \det(\mathbf{A}(u)^\mathsf{T} z + \mathbf{B}(u) + \mathbf{A}(u) z^{-1} - \mathbf{x} I_r) \tag{3}$$

Note:

• For fixed $x \in \mathbb{C}$ there exist 2r roots $z_1(x, u), \ldots z_{2r}(x, u)$ of equation (3), which can ordered according to

$$|z_1(x, u)| \le |z_2(x, u)| \ldots \le |z_{2r}(x, u)|$$

• For any $u \in (0,1)$

$$\Gamma_0(u) = \{x \in \mathbb{C} \mid |z_r(x, u)| = |z_{r+1}(x, u)|\} \subset \mathbb{R}$$

is a union of at most r disjoint intervals.

Weak asymptotics for matrix orthonormal polynomials Theorem 6 [Delvaux, D., 2011] Let

$$\nu_n = \frac{1}{n} \sum_{j=1}^n \delta_{\xi_j^{(n)}}$$

denote empirical distribution function of the roots of the polynomial $R_{k,n}(\textbf{x})$ defined by

$$\mathbf{x} \mathbf{R}_{k,n}(\mathbf{x}) = \mathbf{A}_{k+1,n} \mathbf{R}_{k+1,n}(\mathbf{x}) + \mathbf{B}_{k,n} \mathbf{R}_{k,n}(\mathbf{x}) + \mathbf{A}_{k,n}^{\mathsf{T}} \mathbf{R}_{k-1,n}(\mathbf{x}); \quad \mathbf{k} \geq \mathbf{0},$$

where

$$\lim_{\frac{k}{n}\to u} \mathbf{B}_{\mathbf{k},\mathbf{n}} = \mathbf{B}(\mathbf{u}), \quad \lim_{\frac{k}{n}\to u} \mathbf{A}_{\mathbf{k},\mathbf{n}} = \mathbf{A}(\mathbf{u}).$$

Then ν_n converges weakly to a measure $\mu_{0,u}$, with logarithmic potential

$$\frac{1}{ru}\int_0^u \log |z_1(x,t)\dots z_r(x,t)| \, dt + C_u, \qquad x \in \mathbb{C} \setminus \bigcup_{0 \leq t \leq u} \Gamma_0(t),$$

(here C_u is some constant).

Identification of the limit distribution

Theorem 7 [Delvaux, D. 2011] The measure $\mu_{0,u}$ with logarithmic potential

$$\frac{1}{ru}\int_0^u \log |z_1(x,t)\dots z_r(x,t)| \, dt + C_u, \qquad x \in \mathbb{C} \setminus \bigcup_{0 \le t \le u} \Gamma_0(t),$$

is absolute continuous with density given by

$$\frac{\mathsf{d}\mu_{0,\mathsf{u}}(\mathsf{x})}{\mathsf{d}\mathsf{x}} \ = \frac{1}{2\pi\mathsf{u}\mathsf{r}} \int_0^\mathsf{u} \sum_{\mathsf{k}:|\mathsf{z}_\mathsf{k}(\mathsf{x},\mathsf{s})|=1} \Big| \frac{\frac{\partial}{\partial \mathsf{x}}\mathsf{z}_\mathsf{k}(\mathsf{x},\mathsf{s})}{\mathsf{z}_\mathsf{k}(\mathsf{x},\mathsf{s})} \Big| \mathsf{d}\mathsf{s}$$

イロン イロン イヨン イヨン 三日

47 / 54

Application to random block matrices

- By Theorem 5 it can be shown that the eigenvalue distribution has the same asymptotic properties as the distribution of the roots of matrix orthogonal polynomials $Q_{m,n}(x)$, where m = n/r
- This means

$$\lim_{n\to\infty}\frac{m}{n}=\frac{1}{r}$$

• Theorem 7 yields for the limiting distribution

$$\frac{d\mu_{0,1/r}(x)}{dx} = \frac{1}{2\pi} \int_0^{1/r} \frac{1}{\sqrt{s}} \sum_{k:|z_k(x/\sqrt{s})|=1} \Big| \frac{z'_k(x/\sqrt{s})}{z_k(x/\sqrt{s})} \Big| ds$$

where $z_1(x), z_2(x), \ldots, z_{2r}(x)$ are the (ordered) roots of the equation

$$\mathbf{0} = \mathbf{f}(\mathbf{z}, \mathbf{x}) := \det(\mathbf{A}^{\mathsf{T}}(\mathbf{1})\mathbf{z} + \mathbf{B}(\mathbf{1}) + \mathbf{A}(\mathbf{1})\mathbf{z}^{-1} - \mathbf{x}\mathbf{I}_{\mathsf{r}})$$

Application to random block matrices

$$\mathbf{A(1)} := \sqrt{\frac{r}{2}} \begin{pmatrix} \sqrt{\beta_{r-1}} & 0 & 0 & \cdots & 0\\ \sqrt{\beta_{r-1}} & \sqrt{\beta_{r}} & 0 & \cdots & 0\\ \vdots & \ddots & \ddots & \ddots & \vdots\\ \sqrt{\beta_{2}} & \cdots & \sqrt{\beta_{r-1}} & \sqrt{\beta_{r}} & 0\\ \sqrt{\beta_{1}} & \cdots & \sqrt{\beta_{r-2}} & \sqrt{\beta_{r-1}} & \sqrt{\beta_{r}} \end{pmatrix} \in \mathbb{R}^{r \times r},$$
$$\mathbf{B(1)} := \sqrt{\frac{r}{2}} \begin{pmatrix} 0 & \sqrt{\beta_{1}} & \sqrt{\beta_{2}} & \cdots & \sqrt{\beta_{r-1}}\\ \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} & \cdots & \sqrt{\beta_{r-2}}\\ \vdots & \ddots & \ddots & \ddots & \vdots\\ \sqrt{\beta_{r-2}} & \cdots & \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}}\\ \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} \\ \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} \\ \sqrt{\beta_{r-1}} & \cdots & \sqrt{\beta_{2}} & \sqrt{\beta_{1}} & 0 \\ \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} & 0 \\ \sqrt{\beta$$

Eigenvalues of a 5000 imes 5000 matrix ($\beta_1 = \beta_2 = 1$)

Figure: Left panel: histogram of the simulated eigenvalues Right panel: asymptotic distribution

Eigenvalues of a 5000 imes 5000 matrix ($\beta_1 = 5$; $\beta_2 = 1$)

Figure: Left panel: histogram of the simulated eigenvalues Right panel: asymptotic distribution

Eigenvalues of a 5000 \times 5000 matrix

Figure: Left panel: histogram and density ($\beta_1 = 1$; $\beta_2 = 1$) Right panel: histogram and density ($\beta_1 = 5$; $\beta_2 = 1$)

Conclusions and further research

- Optimal designs (matrix) orthogonal polynomials random matrices
- I did **not** present a solution of the design problem for the dose finding trial (it is too complicated)!

Conclusions and further research

- Optimal designs (matrix) orthogonal polynomials random matrices
- I did **not** present a solution of the design problem for the dose finding trial (it is too complicated)!
- Possible future research:
 - Measure of orthogonality for matrix Chebyshev polynomials?
 - Wigner block matrices (there seem to exist relations to free probability)?
 - Distribution of the eigenvalues of the band matrices considered here?
 - Use matrix orthogonal polynomials for solving optimal design problems?
 - Matrix measures and stationary processes?

Some selected references

Optimal design

H. Dette, F. Bretz, A. Pepelyshev and J. Pinheiro. Optimal designs for dose finding studies. J. Amer. Statist. Assoc. 103, (2008), 1225-1237.

β-ensembles

I. Dumitriu and A. Edelmann. Matrix models for beta ensembles. J. Math. Phys. 43 (2002), 5830-5847.

H. Dette and L. Imhof. Uniform approximation of eigenvalues in Laguerre and Hermite-ensembles by roots of orthogonal polynomials. Trans. Amer. Math. Soc. 359, (2007), 4999-5018.

F.J. Dyson. The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, (1962), 1199-1215.

Matrix polynomials

D. Damanik, A. Pushnitski and B. Simon. The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, (2008), 1-85.

D. Damanik, R. Killip and B. Simon. Perturbations of orthogonal polynomials with periodic recursion coefficients. Ann. of Math. 171, (2010), 1931-2010.

H. Dette and W.J. Studden. Matrix measures, moment spaces and Favard's theorem for the interval [0, 1] and $[0, \infty]$. Linear Algebra Appl. 345 (2002), 169-193.

M.G. Krein. Infinite J-matrices and a matrix moment problem. Dokl. Akad. Nauk SSSR 69, (1949), 125-128 (in Russian).

(Random) block matrices

A. Böttcher and B. Silbermann (1998) Introduction to Large Truncated Toeplitz Matrices. Universitext, Springer-Verlag, New York, 1998.

H. Dette and B. Reuther. Random block matrices and matrix orthogonal polynomials. J. Theor. Probab. 23, (2010), 378-400.

S. Delvaux, and H. Dette. Zeros and ratio asymptotics for matrix orthogonal polynomials Submitted for publication, (2011). arXiv:1108.5155v2

H. Widom. Asymptotic behavior of block Toeplitz matrices and determinants. Advances in Math. 13, (1974), 284-322.