Optimal design, orthogonal polynomials and random matrices

Holger Dette ${ }^{5}$
joint work with F. Bretz ${ }^{1}$, S. Delvaux ${ }^{2}$, L. Imhof ${ }^{3}$, W.J. Studden ${ }^{4}$

${ }^{1}$ Novartis, Basel
${ }^{2}$ Katholieke Universiteit Leuven
${ }^{3}$ University of Bonn
${ }^{4}$ Purdue University
${ }^{5}$ Ruhr-University Bochum

September 2011, Köln

SFB | TR 12

Contents

- Motivating example: dose finding experiment
- Some optimal design theory
- Optimal design for weighted polynomial regression
- Weak asymptotics of optimal designs

Contents

- Motivating example: dose finding experiment
- Some optimal design theory
- Optimal design for weighted polynomial regression
- Weak asymptotics of optimal designs
- Random matrices - the Gaussian ensemble
- Random band matrices
- Matrix orthogonal polynomials
- The limiting spectrum of random band matrices

Motivating example: drug development (clinical phase)

- Phase I: $20-40$ patients
- Phase II: 100 - 300 patients
- Phase III: $1000-10000$ patients

What dose level should be used in the the phase III trial?

Motivating Example: drug development

- Confirmatory trial (phase II) to determine the appropriate target dose
- Main goal: estimation of the minimum effective dose level (target dose), which produces at least the clinically relevant effect
- Mathematical (extremely simplified) description of the dose response relationship (Michaelis Menten model)

(Nonlinear) regression model

$$
Y=\eta(x, \theta)+\sigma(x, \theta) \varepsilon, \quad x \in \mathcal{X}
$$

- \mathcal{X} denotes the design space
- ε random error, $E[\varepsilon]=0, E\left[\varepsilon^{2}\right]=1$
- m independent observations Y_{1}, \ldots, Y_{m} at experimental conditions x_{1}, \ldots, x_{m} to estimate the vector of parameters θ
- Expectation of Y (at experimental condition x) is given by $\eta(x, \theta)$
- Variance of Y (at experimental condition x) is given by $\sigma^{2}(x, \theta)$
- Example: Michaelis Menten model

$$
\eta(x, \theta)=\frac{\theta_{1} x}{x+\theta_{2}}, \quad \sigma(x, \theta)=\frac{\theta_{1} x}{x+\theta_{2}}, \quad x \in \mathcal{X}=(0, \infty)
$$

Problem: At which points x_{i} should we take observations ?

Definition: An approximate design ξ is a probability measure on the design space \mathcal{X}.

Example:

$$
\xi=\left(\begin{array}{ccc}
25 & 80 & 150 \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

$\Rightarrow \quad 1 / 3$ of the total observations at each point 25,80 and 150

- $m=30 \rightarrow 10,10,10$
- $m=40 \rightarrow 13,14,13$

Measuring the quality of designs

- Weighted least squares estimator: $\hat{\theta}$

$$
\Rightarrow \operatorname{Cov}(\hat{\theta}) \sim \frac{1}{m} M^{-1}(\xi)
$$

where

$$
\begin{aligned}
M(\xi)= & \int_{\mathcal{X}} \frac{1}{\sigma^{2}(x, \theta)}\left(\frac{\partial \eta(x, \theta)}{\partial \theta}\right)^{T} \frac{\partial \eta(x, \theta)}{\partial \theta} \\
& +\frac{1}{2 \sigma^{4}(x, \theta)}\left(\frac{\partial \sigma^{2}(x, \theta)}{\partial \theta}\right)^{T} \frac{\partial \sigma^{2}(x, \theta)}{\partial \theta} d \xi(x)
\end{aligned}
$$

denotes the information matrix of the design ξ (this measure refers to the normality assumption).

Measuring the quality of designs

- Weighted least squares estimator: $\hat{\theta}$

$$
\Rightarrow \operatorname{Cov}(\hat{\theta}) \sim \frac{1}{m} M^{-1}(\xi)
$$

where

$$
\begin{aligned}
M(\xi)= & \int_{\mathcal{X}} \frac{1}{\sigma^{2}(x, \theta)}\left(\frac{\partial \eta(x, \theta)}{\partial \theta}\right)^{T} \frac{\partial \eta(x, \theta)}{\partial \theta} \\
& +\frac{1}{2 \sigma^{4}(x, \theta)}\left(\frac{\partial \sigma^{2}(x, \theta)}{\partial \theta}\right)^{T} \frac{\partial \sigma^{2}(x, \theta)}{\partial \theta} d \xi(x)
\end{aligned}
$$

denotes the information matrix of the design ξ (this measure refers to the normality assumption).

Goal:

- Maximize $M(\xi)$ w.r.t. the choice of the design ξ (impossible!!)

Optimality criteria

- Only a partial ordering in the space of nonnegative definite matrices
- Maximize real valued (statistical meaningful) functions of $M(\xi) \rightarrow$ optimality criteria

Optimality criteria

- Only a partial ordering in the space of nonnegative definite matrices
- Maximize real valued (statistical meaningful) functions of $M(\xi) \rightarrow$ optimality criteria
- The application determines the criterion
- c-optimality (MED-estimation)

$$
\xi^{*}=\arg \max _{\xi}\left(c^{T} M^{-1}(\xi) c\right)^{-1}
$$

where c is a vector determined by the regression model.

- D-optimality (precise estimation of all parameters)

$$
\xi^{*}=\arg \max _{\xi}|M(\xi)|
$$

- In this talk we will only consider D-optimal designs and polynomial models!

Classical (weigthed) polynomial regression model

- Polynomial regression model $\left[\theta=\left(\theta_{0}, \ldots, \theta_{n-1}\right)^{T}, x \in(-\infty, \infty)\right]$

$$
\begin{aligned}
\eta(x, \theta) & =\sum_{j=0}^{n-1} \theta_{j} x^{j} \\
\sigma^{2}(x, \theta) & =e^{x^{2}}
\end{aligned}
$$

- Example: $n=2$, linear regression model (with heteroscedastic error)

$$
\frac{\partial}{\partial \theta} \eta(x, \theta)=\left(1, x, \ldots, x^{n-1}\right)^{T}, \quad \frac{\partial}{\partial \theta} \sigma^{2}(x, \theta)=0
$$

D-optimal design problem (weighted polynomial regression)

A D-optimal design maximizes the determinant

$$
\begin{aligned}
|M(\xi)| & =\left|\left(\int_{\mathbb{R}} x^{i+j} e^{-x^{2}} d \xi(x)\right)_{i, j=0, \ldots, n-1}\right| \\
& =\left\lvert\, \begin{array}{cccc}
\int_{\mathbb{R}} e^{-x^{2}} d \xi(x) & \int_{\mathbb{R}} x e^{-x^{2}} d \xi(x) & \cdots & \int_{\mathbb{R}} x^{n-1} e^{-x^{2}} d \xi(x) \\
\int_{\mathbb{R}} x e^{-x^{2}} d \xi(x) & \int_{\mathbb{R}} x^{2} e^{-x^{2}} d \xi(x) & \ldots & \int_{\mathbb{R}} x^{n} e^{-x^{2}} d \xi(x) \\
\vdots & \ddots & \ddots & \vdots \\
\int_{\mathbb{R}} x^{n-1} e^{-x^{2}} d \xi(x) & \int_{\mathbb{R}} x^{2} e^{-x^{2}} d \xi(x) & \ldots & \int_{\mathbb{R}} x^{2 n-2} e^{-x^{2}} d \xi(x)
\end{array}\right.
\end{aligned}
$$

in the class of all probability measures of \mathbb{R}.

D-optimal design problem

Theorem 1: The D-optimal design ξ^{*} is a uniform distribution on the set

$$
\left\{z \mid H_{n}(z)=0\right\}
$$

where H_{n} denotes the n-th Hermite polynomial, orthogonal with respect to the measure

$$
e^{-x^{2}} d x
$$

Two Proofs:

- Equivalence theorems (from design theory) and second order differential equations (Stieltjes)
- Moment theory

Proof; Step 1 (idea): identification of the weights

- Equivalence theorem for D-optimality (Kiefer and Wolfowitz, 1960): ξ^{*} is D-optimal if and only if

$$
\forall x \in \mathbb{R} \quad e^{-x^{2}}\left(1, x, \ldots, x^{n-1}\right) M^{-1}\left(\xi^{*}\right)\left(1, x, \ldots, x^{n-1}\right)^{T} \leq n
$$

Moreover, there is equality for all support points of the D-optimal design.

Proof; Step 1 (idea): identification of the weights

- Equivalence theorem for D-optimality (Kiefer and Wolfowitz, 1960): ξ^{*} is D-optimal if and only if

$$
\forall x \in \mathbb{R} \quad e^{-x^{2}}\left(1, x, \ldots, x^{n-1}\right) M^{-1}\left(\xi^{*}\right)\left(1, x, \ldots, x^{n-1}\right)^{T} \leq n
$$

Moreover, there is equality for all support points of the D-optimal design.

- Example: weighted polynomial regression of degree $7(n=8)$
- D-optimal design (solid curve)
- Equidistant design on 10 points in the interval [-4, 4]
- Note: D-optimal design has 8 support points (saturated)

Proof; Step 1 (idea): identification of the weights

- Equivalence theorem for D-optimality: ξ^{*} is D-optimal if and only if

$$
\forall x \in \mathbb{R} \quad e^{-x^{2}}\left(1, x, \ldots, x^{n-1}\right) M^{-1}\left(\xi^{*}\right)\left(1, x, \ldots, x^{n-1}\right)^{T} \leq n
$$

Moreover, there is equality for all support points of the D-optimal design.

- The optimal design has n support points

$$
\Rightarrow \quad \xi^{*}=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right)
$$

Proof; Step 1 (idea): identification of the weights

- Equivalence theorem for D-optimality: ξ^{*} is D-optimal if and only if

$$
\forall x \in \mathbb{R} e^{-x^{2}}\left(1, x, \ldots, x^{n-1}\right) M^{-1}\left(\xi^{*}\right)\left(1, x, \ldots, x^{n-1}\right)^{T} \leq n
$$

Moreover, there is equality for all support points of the D-optimal design.

- The optimal design has n support points

$$
\Rightarrow \quad \xi^{*}=\left(\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n} \\
w_{1} & w_{2} & \cdots & w_{n}
\end{array}\right)
$$

$$
\begin{aligned}
\left|\mathbf{M}\left(\xi^{*}\right)\right| & =\prod_{\mathbf{1} \leq \mathbf{i}<\mathbf{j} \leq \mathbf{n}}\left(\mathbf{x}_{\mathbf{i}}-\mathbf{x}_{\mathbf{j}}\right)^{2} \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathrm{e}^{-\mathrm{x}_{\mathbf{i}}^{2}} \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathbf{w}_{\mathbf{i}} \\
& \longrightarrow \max _{x_{i}, w_{i}} \\
& \longrightarrow w_{i}=\frac{1}{n}, \quad i=1, \ldots, n
\end{aligned}
$$

Proof; Step 2 (idea): identification of the support

- Let

$$
f(x)=\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

denote the supporting polynomial.

- The necessary condition for an extremum yields a system of n non-linear equations

$$
f^{\prime \prime}\left(x_{j}\right)-2 x_{j} f^{\prime}\left(x_{j}\right)=0 \quad j=1, \ldots n
$$

Proof; Step 2 (idea): identification of the support

- Let

$$
f(x)=\left(x-x_{1}\right) \ldots\left(x-x_{n}\right)
$$

denote the supporting polynomial.

- The necessary condition for an extremum yields a system of n non-linear equations

$$
f^{\prime \prime}\left(x_{j}\right)-2 x_{j} f^{\prime}\left(x_{j}\right)=0 \quad j=1, \ldots n
$$

- Derive a differential equation for the supporting polynomial

$$
f^{\prime \prime}(x)-2 x f^{\prime}(x)=-2 n f(x)
$$

- This differential equation has exactly one polynomial solution

$$
f(x)=c H_{n}(x)
$$

Weak asymptotics of roots of Hermite polynomials:

- Theorem 2:

$$
\xi_{n}^{*}((0, t])=\frac{1}{n} \#\left\{z \leq t \mid H_{n}(\sqrt{n} z)=0\right\}
$$

If $n \rightarrow \infty$, then : ξ_{n}^{*} converges weakly to an absolute continuous measure μ^{*} with density

$$
\frac{d \mu^{*}}{d x}=\frac{1}{\pi} \sqrt{2-x^{2}} I_{[-\sqrt{2}, \sqrt{2}]}(x)
$$

- μ^{*} is called the Wigner semi-circle law

Proof (idea):

- Use the differential equation for Hermite polynomials to derive a recurrence relation for the moments of the uniform distribution ξ_{n}^{*} on the set

$$
\left\{z \leq t \mid H_{n}(\sqrt{n} z)=0\right\}
$$

that is

$$
\mu_{2 \mathbf{r}, \mathbf{n}}=\frac{1}{2}\left\{\sum_{\nu=\mathbf{0}}^{\mathbf{r}-\mathbf{1}} \mu_{2 \mathbf{r}-2 \nu-2, \mathbf{n}} \mu_{2 \nu, \mathbf{n}}-\frac{2 \mathbf{r}-\mathbf{1}}{\mathbf{n}} \mu_{2 \mathbf{r}-\mathbf{2}, \mathbf{n}}\right\}
$$

- Recurrence relation in the limit $(n \rightarrow \infty)$

$$
\mu_{2 \mathrm{r}}^{*}=\frac{\mathbf{1}}{\mathbf{2}} \sum_{\nu=\mathbf{0}}^{\mathbf{r}-\mathbf{1}} \mu_{2 \mathrm{r}-2 \nu-\mathbf{2}}^{*} \mu_{\mathbf{2} \nu}^{*}
$$

- Identify the moments and the limit distribution

$$
\mu_{2 r}^{*}=\frac{1}{r+1}\left(\frac{1}{2}\right)^{r}\binom{2 r}{r}=\frac{1}{\pi} \int_{-\sqrt{2}}^{\sqrt{2}} x^{2 r} \sqrt{2-x^{2}} d x
$$

Elementary random matrix theory

- $M_{n} \in \mathbb{R}^{n \times n}$ symmetric matrix with i.i.d. entries $M_{n}(i, j) \sim \mathcal{N}\left(0, \frac{1}{2}\right)$
- Problem: location of the eigenvalues of the random matrix M_{n} ?

Elementary random matrix theory

- $M_{n} \in \mathbb{R}^{n \times n}$ symmetric matrix with i.i.d. entries $M_{n}(i, j) \sim \mathcal{N}\left(0, \frac{1}{2}\right)$
- Problem: location of the eigenvalues of the random matrix M_{n} ?
- The joint density of the (random) eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ of the matrix M_{n} is given by

$$
\mathbf{h}(\lambda)=\mathbf{c} \prod_{\mathbf{1} \leq i<j \leq \mathbf{n}}\left|\lambda_{\mathbf{i}}-\lambda_{\mathbf{j}}\right| \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathrm{e}^{-\frac{\lambda_{i}^{2}}{2}},
$$

- (Maximum likelihood) Typical locations are the points where the density is maximal!

Elementary random matrix theory

- $M_{n} \in \mathbb{R}^{n \times n}$ symmetric matrix with i.i.d. entries $M_{n}(i, j) \sim \mathcal{N}\left(0, \frac{1}{2}\right)$
- Problem: location of the eigenvalues of the random matrix M_{n} ?
- The joint density of the (random) eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ of the matrix M_{n} is given by

$$
\mathbf{h}(\lambda)=\mathbf{c} \prod_{\mathbf{1} \leq i<j \leq \mathbf{n}}\left|\lambda_{\mathbf{i}}-\lambda_{\mathbf{j}}\right| \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathrm{e}^{-\frac{\lambda_{i}^{2}}{2}},
$$

- (Maximum likelihood) Typical locations are the points where the density is maximal!
- D-optimal design theory tells us: look at roots of the Hermite polynomial $H_{n}(z)$
- Note: If $n \rightarrow \infty$ the roots of $H_{n}(\sqrt{n} z)$ become dense in $[-\sqrt{2}, \sqrt{2}]$.

Semi-circle law for the Gaussian ensemble

Theorem 3 Let $\lambda_{1}^{(n)} \leq \lambda_{2}^{(n)} \leq \ldots \leq \lambda_{n}^{(n)}$ denote the eigenvalues of the random matrix

$$
\frac{1}{\sqrt{n}} M_{n}
$$

and by

$$
\mu_{n}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\lambda_{j}^{(n)}}
$$

the empirical eigenvalue distribution (δ_{x} is the Dirac measure), then for any $t \in[-\sqrt{2}, \sqrt{2}]$

$$
\lim _{n \rightarrow \infty} \mu_{n}((-\sqrt{2}, t])=\frac{1}{\pi} \int_{-\sqrt{2}}^{t} \sqrt{2-x^{2}} d x \quad \text { a.s. }
$$

Eigenvalues of a 5000×5000 matrix

Figure: Left panel: histogram of the simulated eigenvalues. Right panel: asymptotic distribution

Eigenvalues of a 5000×5000 matrix

Figure: Histogram of the simulated eigenvalues and the asymptotic distribution

β-ensembles

- The β-ensemble $(\beta>0)$ is defined by the density

$$
\begin{equation*}
\mathbf{h}(\lambda)=\mathbf{c} \prod_{\mathbf{1} \leq \mathbf{i}<j \leq \mathbf{n}}\left|\lambda_{\mathbf{i}}-\lambda_{\mathbf{j}}\right|^{\beta} \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathrm{e}^{-\frac{\lambda_{\mathbf{i}}^{2}}{2}}, \tag{1}
\end{equation*}
$$

Density of the eigenvalues of a $n \times n$ matrix with normally distributed random variables [Dyson (1962)], where

$$
\begin{array}{ll}
\beta=1: & \text { real entries } \\
\beta=2: & \text { complex entries } \\
\beta=4: & \text { quaternion entries }
\end{array}
$$

β-ensembles

- The β-ensemble $(\beta>0)$ is defined by the density

$$
\begin{equation*}
\mathbf{h}(\lambda)=\mathbf{c} \prod_{\mathbf{1} \leq \mathbf{i}<\mathbf{j} \leq \mathbf{n}}\left|\lambda_{\mathbf{i}}-\lambda_{\mathbf{j}}\right|^{\beta} \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathrm{e}^{-\frac{\lambda_{\mathbf{i}}^{2}}{2}}, \tag{1}
\end{equation*}
$$

Density of the eigenvalues of a $n \times n$ matrix with normally distributed random variables [Dyson (1962)], where

$$
\begin{array}{ll}
\beta=1: & \text { real entries } \\
\beta=2: & \text { complex entries } \\
\beta=4: & \text { quaternion entries }
\end{array}
$$

- Is there any random matrix whose eigenvalue distribution is given by (1) for any $\beta>0$?

β-ensembles

- The β-ensemble $(\beta>0)$ is defined by the density

$$
\begin{equation*}
\mathbf{h}(\lambda)=\mathbf{c} \prod_{\mathbf{1} \leq \mathbf{i}<\mathbf{j} \leq \mathbf{n}}\left|\lambda_{\mathbf{i}}-\lambda_{\mathbf{j}}\right|^{\beta} \prod_{\mathbf{i}=\mathbf{1}}^{\mathbf{n}} \mathrm{e}^{-\frac{\lambda_{\mathbf{i}}^{2}}{2}}, \tag{1}
\end{equation*}
$$

Density of the eigenvalues of a $n \times n$ matrix with normally distributed random variables [Dyson (1962)], where

$$
\begin{array}{ll}
\beta=1: & \text { real entries } \\
\beta=2: & \text { complex entries } \\
\beta=4: & \text { quaternion entries }
\end{array}
$$

- Is there any random matrix whose eigenvalue distribution is given by (1) for any $\beta>0$?
- The answer is positive [Dumitriu and Edelman, 2004]
- The matrix can be chosen in a tridiagonal form (Householder transformations)!

Tridiagonal matrix representation for the β-ensemble

$$
G_{n}^{(1)}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccccc}
\sqrt{2} N_{1} & \mathcal{X}_{(n-1) \beta} & & & \\
\mathcal{X}_{(n-1) \beta} & \sqrt{2} N_{2} & \mathcal{X}_{(n-2) \beta} & & \\
& \ddots & \ddots & \ddots & \\
& & \mathcal{X}_{2 \beta} & \sqrt{2} N_{n-1} & \mathcal{X}_{\beta} \\
& & & \mathcal{X}_{\beta} & \sqrt{2} N_{n}
\end{array}\right]
$$

Note:

- $N_{1}, N_{2}, \ldots, N_{n}$ are standard normal distributed $\left(N_{j} \sim \mathcal{N}(0,1)\right)$
- For $j=1, \ldots, n-1$ the random variable $\mathcal{X}_{j \beta}^{2}$ is chi-square distributed with " $j \beta$ degrees of freedom" $\left(\mathcal{X}_{j \beta}^{2} \sim \chi^{2}(j \beta)\right)$
- All random variables are independent

Eigenvalues are "close" to roots of orthogonal polynomials

Theorem 4: [D., Imhof, 2007] If

$$
\lambda_{1}^{(n)} \leq \lambda_{2}^{(n)} \leq \ldots \leq \lambda_{n}^{(n)}
$$

denote the eigenvalues of the matrix $\frac{1}{\sqrt{n}} G_{n}^{(1)}$ and

$$
\xi_{1}^{(n)}<\xi_{2}^{(n)}<\cdots<\xi_{n}^{(n)}
$$

denote the zeros of the polynomial $H_{n}(\sqrt{n \beta} z)$, then $(n \rightarrow \infty)$

$$
\max _{1 \leq j \leq n}\left|\lambda_{j}^{(n)}-\xi_{j}^{(n)}\right|=O\left(\left(\frac{\log n}{n}\right)^{1 / 2}\right) \quad \text { a.s. }
$$

Idea of a proof of Theorem 4

- Expectation of chi-square distribution $\mathbf{E}\left[\mathcal{X}_{\mathbf{j} \beta}^{\mathbf{2}}\right]=\mathbf{j} \beta$. Approximate

$$
\mathrm{E}\left[\mathcal{X}_{\mathrm{j} \beta}\right] \approx \sqrt{\mathrm{j} \beta}
$$

- Consider the (non-random) matrix

$$
E\left[G_{n}^{(1)}\right] \approx F_{n}=\sqrt{\frac{\beta}{2}}\left[\begin{array}{ccccc}
0 & \sqrt{n-1} & & & \tag{2}\\
\sqrt{n-1} & 0 & \sqrt{n-2} & & \\
& \ddots & \ddots & \ddots & \\
& & \sqrt{2} & 0 & 1 \\
& & & 1 & 0
\end{array}\right]
$$

- Note: by the three term recurrence relation for Hermite polynomials we have:

$$
\operatorname{det}\left(\mathbf{x} \mathbf{I}_{\mathbf{n}}-\mathbf{F}_{\mathbf{n}}\right)=\left(\frac{\sqrt{\beta}}{\mathbf{2}}\right)^{\mathbf{n}} \mathbf{H}_{\mathbf{n}}\left(\frac{\mathbf{x}}{\sqrt{\beta}}\right)
$$

Idea of a proof of Theorem 4

- $\lambda_{1}^{(n)} \leq \lambda_{2}^{(n)} \leq \ldots \leq \lambda_{n}^{(n)}$: eigenvalues of the matrix $\frac{1}{\sqrt{n}} G_{n}^{(1)}$
- $\xi_{1}^{(n)}<\cdots<\xi_{n}^{(n)}$: roots of the polynomial $H_{n}(\sqrt{n \beta} z)$
- Weyl's inequality
$\sqrt{n} \max _{1 \leq j \leq n}\left|\lambda_{j}^{(n)}-\xi_{j}^{(n)}\right| \leq\left\|G_{n}^{(1)}-F_{n}\right\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|\left(G_{n}^{(1)}-F_{n}\right)_{i j}\right|$

Idea of a proof of Theorem 4

- $\lambda_{1}^{(n)} \leq \lambda_{2}^{(n)} \leq \ldots \leq \lambda_{n}^{(n)}$: eigenvalues of the matrix $\frac{1}{\sqrt{n}} G_{n}^{(1)}$
- $\xi_{1}^{(n)}<\cdots<\xi_{n}^{(n)}$: roots of the polynomial $H_{n}(\sqrt{n \beta} z)$
- Weyl's inequality
$\sqrt{n} \max _{1 \leq j \leq n}\left|\lambda_{j}^{(n)}-\xi_{j}^{(n)}\right| \leq\left\|G_{n}^{(1)}-F_{n}\right\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|\left(G_{n}^{(1)}-F_{n}\right)_{i j}\right|$
- Large deviations:

$$
\begin{aligned}
& P\left\{\frac{\left|X_{j \beta}-\sqrt{j \beta}\right|}{\sqrt{2}}\right.\left.\geq \frac{\epsilon}{3}\right\} \leq 2 e^{-\epsilon^{2} / 9}, \quad P\left\{\left|N_{j}\right| \geq \frac{\epsilon}{3}\right\} \leq 2 e^{-\epsilon^{2} / 18} \\
& \Longrightarrow P\left\{\max _{1 \leq j \leq n}\left|\lambda_{j}^{(n)}-\xi_{j}^{(n)}\right| \geq \epsilon\right\} \leq 4 n e^{-n \beta \epsilon^{2} / 9}
\end{aligned}
$$

Idea of a proof of Theorem 4

- $\lambda_{1}^{(n)} \leq \lambda_{2}^{(n)} \leq \ldots \leq \lambda_{n}^{(n)}$: eigenvalues of the matrix $\frac{1}{\sqrt{n}} G_{n}^{(1)}$
- $\xi_{1}^{(n)}<\cdots<\xi_{n}^{(n)}$: roots of the polynomial $H_{n}(\sqrt{n \beta} z)$
- Weyl's inequality

$$
\sqrt{n} \max _{1 \leq j \leq n}\left|\lambda_{j}^{(n)}-\xi_{j}^{(n)}\right| \leq\left\|G_{n}^{(1)}-F_{n}\right\|_{\infty}=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|\left(G_{n}^{(1)}-F_{n}\right)_{i j}\right|
$$

- Large deviations:

$$
\begin{aligned}
& P\left\{\frac{\left|\chi_{j \beta}-\sqrt{j \beta}\right|}{\sqrt{2}}\right.\left.\geq \frac{\epsilon}{3}\right\} \leq 2 e^{-\epsilon^{2} / 9}, \quad P\left\{\left|N_{j}\right| \geq \frac{\epsilon}{3}\right\} \leq 2 e^{-\epsilon^{2} / 18} \\
& \Longrightarrow P\left\{\max _{1 \leq j \leq n}\left|\lambda_{j}^{(n)}-\xi_{j}^{(n)}\right| \geq \epsilon\right\} \leq 4 n e^{-n \beta \epsilon^{2} / 9}
\end{aligned}
$$

- Borel Cantelli

$$
\max _{1 \leq j \leq n}\left|\lambda_{j}^{(n)}-\xi_{j}^{(n)}\right|=O\left(\left(\frac{\log n}{n}\right)^{1 / 2}\right) \quad \text { a.s. }
$$

Idea of a proof of Theorem $3(\beta=1)$

- The random eigenvalues of the matrix $\frac{1}{\sqrt{n}} G_{n}^{(1)}$ can be (uniformly, almost surely) approximated by roots of the Hermite polynomial $H_{n}(\sqrt{n \beta} z)$.
- The uniform distribution on the roots Hermite polynomial $H_{n}(\sqrt{n \beta} z)$ converges weakly to Wigner's semi-circle law.
- The empirical eigenvalue distribution of the random matrix $\frac{1}{\sqrt{n}} G_{n}^{(1)}$ converges weakly to Wigner's semi-circle law (almost surely).

Random band matrices - tridiagonal $\left(r=1, \beta_{1}>0\right)$

$$
G_{n}^{(1)}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccccc}
\sqrt{2} N_{1} & \mathcal{X}_{(n-1) \beta_{1}} & & & & \\
\mathcal{X}_{(n-1) \beta_{1}} & \sqrt{2} N_{2} & \mathcal{X}_{(n-2) \beta_{1}} & & & & \\
& \mathcal{X}_{(n-2) \beta_{1}} & \sqrt{2} N_{3} & \mathcal{X}_{(n-3) \beta_{1}} & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

All random variables are independent!

Random 5-band matrices $\left(r=2, \beta_{1}, \beta_{2}>0\right)$

$$
G_{n}^{(2)}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccccc}
\sqrt{2} N_{1} & \mathcal{X}_{(n-1) \beta_{1}} & \mathcal{X}_{(n-2) \beta_{2}} & & & & \\
\mathcal{X}_{(n-1) \beta_{1}} & \sqrt{2} N_{2} & \mathcal{X}_{(n-2) \beta_{1}} & \mathcal{X}_{(n-3) \beta_{2}} & & & \\
\mathcal{X}_{(n-2) \beta_{2}} & \mathcal{X}_{(n-2) \beta_{1}} & \sqrt{2} N_{3} & \mathcal{X}_{(n-3) \beta_{1}} & \mathcal{X}_{(n-4) \beta_{2}} & \ddots & \ddots \\
& \mathcal{X}_{(n-3) \beta_{2}} & \mathcal{X}_{(n-3) \beta_{1}} & \sqrt{2} N_{4} & \mathcal{X}_{(n-4) \beta_{1}} & \ddots & \ddots \\
& & \ddots & \ddots & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

All random variables are independent!

Random 7-band matrices $\left(r=3, \beta_{1}, \beta_{2}, \beta_{3}>0\right)$

$$
G_{n}^{(3)}=
$$

$\frac{1}{\sqrt{2}}\left(\begin{array}{ccccccc}\sqrt{2} N_{1} & \mathcal{X}_{(n-1) \beta_{1}} & \mathcal{X}_{(n-2) \beta_{2}} & \mathcal{X}_{(n-3) \beta_{3}} & & & \\ \mathcal{X}_{(n-1) \beta_{1}} & \sqrt{2} N_{2} & \mathcal{X}_{(n-2) \beta_{1}} & \mathcal{X}_{(n-3) \beta_{2}} & \mathcal{X}_{(n-4) \beta_{3}} & & \\ \mathcal{X}_{(n-2) \beta_{2}} & \mathcal{X}_{(n-2) \beta_{1}} & \sqrt{2} N_{3} & \mathcal{X}_{(n-3) \beta_{1}} & \mathcal{X}_{(n-4) \beta_{2}} & \mathcal{X}_{(n-5) \beta_{3}} & \ddots \\ \mathcal{X}_{(n-3) \beta_{3}} & \mathcal{X}_{(n-3) \beta_{2}} & \mathcal{X}_{(n-3) \beta_{1}} & \sqrt{2} N_{4} & \mathcal{X}_{(n-4) \beta_{1}} & \mathcal{X}_{(n-5) \beta_{2}} & \ddots \\ & \mathcal{X}_{(n-4) \beta_{3}} & \mathcal{X}_{(n-4) \beta_{2}} & \mathcal{X}_{(n-4) \beta_{1}} & \sqrt{2} N_{4} & \mathcal{X}_{(n-5) \beta_{1}} & \ddots \\ & & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots & \ddots & \ddots\end{array}\right)$

All random variables are independent!

Random $2 r+1$ band matrices $\left(\beta_{1}, \ldots, \beta_{r}>0\right)$

$$
\sqrt{2} G_{n}^{(r)}=
$$

$$
\begin{array}{ccccc}
\sqrt{2} N_{1} & \mathcal{X}_{(n-1) \beta_{1}} & \ldots & \mathcal{X}_{(n-r) \beta_{r}} & \\
\mathcal{X}_{(n-1) \beta_{1}} & \sqrt{2} N_{2} & \ldots & \mathcal{X}_{(n-r) \beta_{r-1}} & \mathcal{X}_{(n-r-1) \beta_{r}} \\
\mathcal{X}_{(n-2) \beta_{2}} & \mathcal{X}_{(n-2) \beta_{1}} & \ddots & \ddots & \ddots \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
\mathcal{X}_{(n-r) \beta_{r}} & \mathcal{X}_{(n-r) \beta_{r-1}} & \ddots & \ddots & \ddots \\
& \mathcal{X}_{(n-r-1) \beta_{r}} & & \ddots & \ddots
\end{array}
$$

$$
\begin{array}{cc}
\mathcal{X}_{2 \beta_{1}} & \mathcal{X}_{\beta_{2}} \\
\sqrt{2} N_{n-1} & \mathcal{X}_{\beta_{1}} \\
\mathcal{X}_{\beta_{1}} & \sqrt{2} N_{n}
\end{array}
$$

5-band and tridiagonal block matrices (2×2 blocks)

$\epsilon_{r^{2}}^{(2)}=$
$\frac{1}{\sqrt{2}}\left(\begin{array}{ccccccc}\sqrt{2} N_{1} & \mathcal{X}_{(n-1) \beta_{1}} & \mathcal{X}_{(n-2) \beta_{2}} & 0 & & & \\ \mathcal{X}_{(n-1) \beta_{1}} & \sqrt{2} N_{2} & \mathcal{X}_{(n-2) \beta_{1}} & \mathcal{X}_{(n-3) \beta_{2}} & & & \\ \mathcal{X}_{(n-2) \beta_{2}} & \mathcal{X}_{(n-2) \beta_{1}} & \sqrt{2} N_{3} & \mathcal{X}_{(n-3) \beta_{1}} & \mathcal{X}_{(n-4) \beta_{2}} & 0 & \\ 0 & \mathcal{X}_{(n-3) \beta_{2}} & \mathcal{X}_{(n-3) \beta_{1}} & \sqrt{2} N_{4} & \mathcal{X}_{(n-4) \beta_{1}} & \mathcal{X}_{(n-5) \beta_{2}} & \\ & & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots & \ddots & \ddots\end{array}\right)$

7-band and tridiagonal block matrices (3×3 blocks)

$G_{n}^{(3)}=$
$\frac{1}{\sqrt{2}}\left(\begin{array}{ccccccc}\sqrt{2} N_{1} & \mathcal{X}_{(n-1) \beta_{1}} & \mathcal{X}_{(n-2) \beta_{2}} & \mathcal{X}_{(n-3) \beta_{3}} & 0 & 0 & \ddots \\ \mathcal{X}_{(n-1) \beta_{1}} & \sqrt{2} N_{2} & \mathcal{X}_{(n-2) \beta_{1}} & \mathcal{X}_{(n-3) \beta_{2}} & \mathcal{X}_{(n-4) \beta_{3}} & 0 & \ddots \\ \mathcal{X}_{(n-2) \beta_{2}} & \mathcal{X}_{(n-2) \beta_{1}} & \sqrt{2} N_{3} & \mathcal{X}_{(n-3) \beta_{1}} & \mathcal{X}_{(n-4) \beta_{2}} & \mathcal{X}_{(n-5) \beta_{3}} & \ddots \\ \mathcal{X}_{(n-3) \beta_{3}} & \mathcal{X}_{(n-3) \beta_{2}} & \mathcal{X}_{(n-3) \beta_{1}} & \sqrt{2} N_{4} & \mathcal{X}_{(n-4) \beta_{1}} & \mathcal{X}_{(n-5) \beta_{2}} & \ddots \\ 0 & \mathcal{X}_{(n-4) \beta_{3}} & \mathcal{X}_{(n-4) \beta_{2}} & \mathcal{X}_{(n-4) \beta_{1}} & \sqrt{2} N_{5} & \mathcal{X}_{(n-5) \beta_{1}} & \ddots \\ 0 & 0 & \mathcal{X}_{(n-5) \beta_{3}} & \mathcal{X}_{(n-5) \beta_{2}} & \mathcal{X}_{(n-5) \beta_{1}} & \sqrt{2} N_{6} & \ddots \\ & & \ddots & \ddots & \ddots & \ddots & \ddots \\ & & & \ddots & \ddots & \ddots & \ddots\end{array}\right)$

$2 r+1$-band and tridiagonal block matrices ($r \times r$ blocks)

$$
G_{n}^{(r)}=\left(\begin{array}{ccccc}
B_{0} & A_{1} & & & \\
A_{1}^{T} & B_{1} & A_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & A_{m-2}^{T} & B_{m-2} & A_{m-1} \\
& & & A_{m-1}^{T} & B_{m-1}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

where

- $n=m r$
- B_{i} are symmetric random matrices
- A_{i} are lower random triangular matrices

Problem: location of the eigenvalues?

Excursion: matrix orthogonal polynomials

- Matrix polynomials [Krein (1969), Damanik, Killip, Pushnitski, Simon $(2008,2010)]$

$$
P_{n}(x)=D_{n} x^{n}+D_{n-1} x^{n-1}+\ldots+D_{1} x+D_{0}
$$

where D_{0}, \ldots, D_{n} are $r \times r$ matrices with real entries

- Example:

$$
P_{3}(x)=\left(\begin{array}{cc}
x^{3}+x-1 & 2 x+1 \\
x-1 & 3 x^{2}
\end{array}\right)
$$

Excursion: matrix orthogonal polynomials

- Matrix polynomials [Krein (1969), Damanik, Killip, Pushnitski, Simon $(2008,2010)]$

$$
P_{n}(x)=D_{n} x^{n}+D_{n-1} x^{n-1}+\ldots+D_{1} x+D_{0}
$$

where D_{0}, \ldots, D_{n} are $r \times r$ matrices with real entries

- Example:

$$
P_{3}(x)=\left(\begin{array}{cc}
x^{3}+x-1 & 2 x+1 \\
x-1 & 3 x^{2}
\end{array}\right)
$$

- Roots of a matrix polynomial are defined by $\operatorname{det} P_{n}(x)=0$
- Matrix measure ψ is a matrix of signed Borel measures on the real line such for any Borel set A the matrix $\psi(A)$ is nonnegative definite (spectral measure of multivariate stationary processes)
- "Inner product" with respect to the matrix measure ψ

$$
\left\langle P_{n}, P_{m}\right\rangle:=\int_{\mathbb{R}} P_{n}(x) d \psi(x) P_{m}^{T}(x) \in \mathbb{R}^{r \times r}
$$

Excursion: matrix orthogonal polynomials

- Matrix polynomials are called orthonormal if and only if

$$
\left\langle P_{n}, P_{m}\right\rangle=\delta_{n, m} I_{r} \in \mathbb{R}^{r \times r}
$$

- Some properties of the scalar case are still valid
- All roots of orthogonal matrix polynomials are real
- Favard's Theorem: $\left\{P_{n}\right\}_{n \in \mathbb{N}}$ defines a sequence of matrix orthonormal polynomials if and only

$$
\mathbf{x} \mathbf{P}_{\mathbf{n}}(\mathbf{x})=\mathbf{A}_{\mathbf{n}+\mathbf{1}} \mathbf{P}_{\mathbf{n}+\mathbf{1}}(\mathbf{x})+\mathbf{B}_{\mathbf{n}} \mathbf{P}_{\mathbf{n}}(\mathbf{x})+\mathbf{A}_{\mathbf{n}}^{\top} \mathbf{P}_{\mathrm{n}-\mathbf{1}}(\mathbf{x}), \quad n \geq 0,
$$

for symmetric matrices B_{n} and arbitrary non singular matrices A_{n} [D. and Studden (2002)]

Excursion: matrix orthogonal polynomials

- Matrix multiplication is not commutative
- Orthonormal matrix polynomials are not uniquely determined
- The roots of matrix orthogonal polynomials are not interlacing
- Characterization of the boundary of the moment space corresponding to matrix measures?
- There exists no example of matrix orthogonal polynomials, which has been completely understood

Excursion: matrix orthogonal polynomials

- Matrix multiplication is not commutative
- Orthonormal matrix polynomials are not uniquely determined
- The roots of matrix orthogonal polynomials are not interlacing
- Characterization of the boundary of the moment space corresponding to matrix measures?
- There exists no example of matrix orthogonal polynomials, which has been completely understood
- Example: Scalar Chebyshev polynomials (first kind)

$$
T_{-1}(x)=0, \quad T_{0}(x)=1, T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x)
$$

- Trigonometric representation: $T_{n}(x)=\cos (n \arccos x)$
- Measure of orthogonality: arcsine distribution with density

$$
\frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}} \int_{[-1,1]}(x)
$$

Excursion: matrix Chebyshev polynomials

- $A \in \mathbb{R}^{r \times r}$ non singular; $B \in \mathbb{R}^{r \times r}$ symmetric
- Recurrence relation $T_{0}^{A, B}(x)=I_{p}$,

$$
\begin{aligned}
& T_{1}^{A, B}(x)=(\sqrt{2} A)^{-1}\left(x I_{p}-B\right) \\
& x T_{1}^{A, B}(x)=A T_{2}^{A, B}(x)+B T_{1}^{A, B}(x)+\sqrt{2} A^{T} T_{0}^{A, B}(x) \\
& x T_{n}^{A, B}(x)=A T_{n+1}^{A, B}(x)+B T_{n}^{A, B}(x)+A^{T} T_{n-1}^{A, B}(x), n \geq 2,
\end{aligned}
$$

- If $r=1$ the measure of orthogonality is given by a linear transformation of the arcsine distribution with density

$$
\frac{1}{\pi} \frac{1}{\sqrt{1-x^{2}}} I_{[-1,1]}(x)
$$

- Open problem: The matrix measure $X_{A, B}$ of orthogonality in the case $r>1$?

Return to random of block matrices

We are interested in the eigenvalues of the matrix

$$
G_{n}^{(r)}=\left(\begin{array}{ccccc}
B_{0} & A_{1} & & & \\
A_{1}^{T} & B_{1} & A_{2} & & \\
& \ddots & \ddots & \ddots & \\
& & A_{m-2}^{T} & B_{m-2} & A_{m-1} \\
& & & A_{m-1}^{T} & B_{m-1}
\end{array}\right) \in \mathbb{R}^{n \times n}
$$

where

- $n=m r$
- B_{i} are symmetric random matrices
- A_{i} are lower random triangular matrices

Problem: location of the eigenvalues?

The structure of the blocks $(r \times r)$

$$
\begin{aligned}
B_{i} & =\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}
\sqrt{2} N_{i r+1} & \mathcal{X}_{(n-i r-1) \beta_{1}} & \cdots & \mathcal{X}_{(n-(i+1) r+1) \beta_{r-1}} \\
\mathcal{X}_{(n-i r-1) \beta_{1}} & \sqrt{2} N_{i r+2} & & \cdots & \mathcal{X}_{(n-(i+1) r+1) \beta_{r-2}} \\
\vdots & \ddots & & \ddots & \vdots \\
\mathcal{X}_{(n-(i+1) r+1) \beta_{r-1}} & \cdots & \mathcal{X}_{(n-(i+1) r+1) \beta_{1}} & \sqrt{2} N_{(i+1) r} \\
A_{i} & =\frac{1}{\sqrt{2}}\left(\begin{array}{ccccc}
\\
\mathcal{X}_{(n-i r) \beta_{r}} & 0 & 0 & \cdots & 0 \\
\mathcal{X}_{(n-i r) \beta_{r-1}} & \mathcal{X}_{(n-i r-1) \beta_{r}} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\mathcal{X}_{(n-i r) \beta_{1}} & \mathcal{X}_{(n-i r-1) \beta_{r-1}} & \cdots & \cdots & \mathcal{X}_{(n-(i+1) r+1) \beta_{r}}
\end{array}\right)
\end{array},\right.
\end{aligned}
$$

The structure of the blocks in the case $r=3$:

$$
B_{i}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\sqrt{2} N_{3 i+1} & \mathcal{X}_{(n-3 i-1) \beta_{1}} & \mathcal{X}_{(n-3 i-2) \beta_{2}} \\
\mathcal{X}_{(n-3 i-1) \beta_{1}} & \sqrt{2} N_{3 i+2} & \mathcal{X}_{(n-3 i-2) \beta_{1}} \\
\mathcal{X}_{(n-3 i-2) \beta_{2}} & \mathcal{X}_{(n-3 i-2) \beta_{1}} & \sqrt{2} N_{3 i+3}
\end{array}\right)
$$

$$
A_{i}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\mathcal{X}_{(n-3 i) \beta_{3}} & 0 & 0 \\
\mathcal{X}_{(n-3 i) \beta_{2}} & \mathcal{X}_{(n-3 i-1) \beta_{3}} & 0 \\
\mathcal{X}_{(n-3 i) \beta_{1}} & \mathcal{X}_{(n-3 i-1) \beta_{2}} & \mathcal{X}_{(n-3 i-2) \beta_{3}}
\end{array}\right)
$$

The structure of the blocks in the case $r=3$:

$$
\begin{aligned}
B_{i} & =\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\sqrt{2} N_{3 i+1} & \mathcal{X}_{(n-3 i-1) \beta_{1}} & \mathcal{X}_{(n-3 i-2) \beta_{2}} \\
\mathcal{X}_{(n-3 i-1) \beta_{1}} & \sqrt{2} N_{3 i+2} & \mathcal{X}_{(n-3 i-2) \beta_{1}} \\
\mathcal{X}_{(n-3 i-2) \beta_{2}} & \mathcal{X}_{(n-3 i-2) \beta_{1}} & \sqrt{2} N_{3 i+3}
\end{array}\right) \\
A_{i} & =\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\mathcal{X}_{(n-3 i) \beta_{3}} & 0 & 0 \\
\mathcal{X}_{(n-3 i) \beta_{2}} & \mathcal{X}_{(n-3 i-1) \beta_{3}} & 0 \\
\mathcal{X}_{(n-3 i) \beta_{1}} & \mathcal{X}_{(n-3 i-1) \beta_{2}} & \mathcal{X}_{(n-3 i-2) \beta_{3}}
\end{array}\right)
\end{aligned}
$$

Note: in the following discussion we will explain the structure always in the case $r=3$!

Eigenvalues of block matrices and roots of polynomials

Theorem 5: [D., Reuther, 2010] Let

$$
\lambda_{1}^{(n)} \leq \lambda_{2}^{(n)} \leq \ldots \leq \lambda_{n}^{(n)}
$$

denote the eigenvalues of the random block matrix

$$
\frac{1}{\sqrt{n}} G_{n}^{(r)},
$$

then as $n \rightarrow \infty$:

$$
\max _{1 \leq j \leq n}\left|\lambda_{j}^{(n)}-\xi_{j}^{(n)}\right|=O\left(\left(\frac{\log n}{n}\right)^{1 / 2}\right) \quad \text { a.s. }
$$

where

$$
\xi_{1}^{(n)} \leq \xi_{2}^{(n)} \leq \ldots \leq \xi_{n}^{(n)}
$$

are the roots of the $m=(n / r)$ th matrix orthonormal polynomial $\mathbf{R}_{\mathbf{m}, \mathbf{n}}(\mathbf{x})$ defined by $\mathbf{R}_{-\mathbf{1}, \mathbf{n}}(\mathbf{x})=\mathbf{0}, \mathbf{R}_{\mathbf{0 , n}}(\mathbf{x})=\mathbf{I}_{\mathbf{r}}$

$$
\mathbf{x} \mathbf{R}_{\mathbf{k}, \mathbf{n}}(\mathbf{x})=\mathbf{A}_{\mathbf{k}+1, n} \mathbf{R}_{\mathbf{k}+\mathbf{1}, \mathbf{n}}(\mathbf{x})+\mathbf{B}_{\mathbf{k}, \mathbf{n}} \mathbf{R}_{\mathbf{k}, \mathbf{n}}(\mathbf{x})+\mathbf{A}_{\mathrm{k}, \mathrm{n}}^{\top} \mathbf{R}_{\mathbf{k}-1, \mathbf{n}}(\mathbf{x}) ; \quad \mathbf{k} \geq \mathbf{0}
$$

Coefficients in the recurrence relation (here for $r=3$):

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{k}, \mathbf{n}}=\frac{1}{\sqrt{2 n}}\left(\begin{array}{ccc}
\sqrt{(3 k-2) \beta_{3}} & 0 & 0 \\
\sqrt{\left((3 k-1) \beta_{2}\right.} & \sqrt{(3 k-1) \beta_{3}} & 0 \\
\sqrt{3 k \beta_{1}} & \sqrt{3 k \beta_{2}} & \sqrt{3 k \beta_{3}}
\end{array}\right) \\
& \mathbf{B}_{\mathbf{k}, \mathbf{n}}=\frac{1}{\sqrt{2 n}}\left(\begin{array}{ccc}
0 & \sqrt{(3 k+1) \beta_{1}} & \sqrt{(3 k+1) \beta_{2}} \\
\sqrt{(3 k+1) \beta_{1}} & 0 & \sqrt{(3 k+2) \beta_{1}}
\end{array}\right)
\end{aligned}
$$

Coefficients in the recurrence relation (here for $r=3$):
Note: If $n \rightarrow \infty$ and $\frac{k}{n} \rightarrow u \in(0,1)$, then

$$
\begin{aligned}
& \mathbf{A}_{\mathbf{k}, \mathbf{n}}=\frac{1}{\sqrt{2 n}}\left(\begin{array}{ccc}
\sqrt{(3 k-2) \beta_{3}} & 0 & 0 \\
\sqrt{(3 k-1) \beta_{2}} & \sqrt{(3 k-1) \beta_{3}} & 0 \\
\sqrt{3 k \beta_{1}} & \sqrt{3 k \beta_{2}} & \sqrt{3 k \beta_{3}}
\end{array}\right) \\
& \longrightarrow A(u):=\sqrt{\frac{3 u}{2}}\left(\begin{array}{ccc}
\sqrt{\beta_{3}} & 0 & 0 \\
\sqrt{\beta_{2}} & \sqrt{\beta_{3}} & 0 \\
\sqrt{\beta_{1}} & \sqrt{\beta_{2}} & \sqrt{\beta_{3}}
\end{array}\right) \\
& \mathbf{B}_{\mathbf{k}, \mathbf{n}}=\frac{1}{\sqrt{2 n}}\left(\begin{array}{ccc}
0 & \sqrt{(3 k+1) \beta_{1}} & \sqrt{(3 k+1) \beta_{2}} \\
\sqrt{(3 k+1) \beta_{1}} & 0 & \sqrt{(3 k+2) \beta_{1}} \\
\sqrt{(3 k+1) \beta_{2}} & \sqrt{3 k+2 \beta_{1}} & 0
\end{array}\right) \\
& \longrightarrow B(u):=\sqrt{\frac{3 u}{2}}\left(\begin{array}{ccc}
0 & \sqrt{\beta_{1}} & \sqrt{\beta_{2}} \\
\sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} \\
\sqrt{\beta_{2}} & \sqrt{\beta_{1}} & 0
\end{array}\right)
\end{aligned}
$$

Matrix orthogonal polynomials with varying coefficients

- Problem: For $n \in \mathbb{N}$ let $\left\{R_{k, n}(x)\right\}_{k \in \mathbb{N}_{0}}$ denote a sequence of matrix orthonormal polynomials defined by $\mathbf{R}_{-\mathbf{1 , n}}(\mathbf{x})=\mathbf{0}_{\mathbf{r}}, \mathbf{R}_{\mathbf{0}, \mathbf{n}}(\mathbf{x})=\mathbf{I}_{\mathbf{r}}$
$x R_{k, n}(x)=A_{k+1, n} R_{k+1, n}(x)+B_{k, n} R_{k, n}(x)+A_{k, n}^{\top} R_{k-1, n}(x) ; \quad k \geq 0$,
where

$$
\lim _{\frac{k}{n} \rightarrow u} \mathbf{B}_{\mathbf{k}, \mathbf{n}}=\mathbf{B}(\mathbf{u}), \lim _{\frac{k}{n} \rightarrow u} \mathbf{A}_{\mathbf{k}, \mathbf{n}}=\mathbf{A}(\mathbf{u})
$$

whenever $u \in(0,1)$. What is the behavior of the roots of the polynomials

$$
\mathbf{Q}_{\mathrm{k}, \mathbf{n}}(\mathbf{x})
$$

if $n \rightarrow \infty$?

Matrix orthogonal polynomials with varying coefficients

- Problem: For $n \in \mathbb{N}$ let $\left\{R_{k, n}(x)\right\}_{k \in \mathbb{N}_{0}}$ denote a sequence of matrix orthonormal polynomials defined by $\mathbf{R}_{-\mathbf{1 , n}}(\mathbf{x})=\mathbf{0}_{\mathbf{r}}, \mathbf{R}_{\mathbf{0}, \mathbf{n}}(\mathbf{x})=\mathbf{I}_{\mathbf{r}}$
$x R_{k, n}(x)=A_{k+1, n} R_{k+1, n}(x)+B_{k, n} R_{k, n}(x)+A_{k, n}^{\top} R_{k-\mathbf{1}, \mathbf{n}}(x) ; \quad k \geq 0$,
where

$$
\lim _{\frac{k}{n} \rightarrow u} \mathbf{B}_{\mathbf{k}, \mathbf{n}}=\mathbf{B}(\mathbf{u}), \lim _{\frac{k}{n} \rightarrow u} \mathbf{A}_{\mathbf{k}, \mathbf{n}}=\mathbf{A}(\mathbf{u})
$$

whenever $u \in(0,1)$. What is the behavior of the roots of the polynomials

$$
\mathbf{Q}_{\mathrm{k}, \mathbf{n}}(\mathbf{x})
$$

if $n \rightarrow \infty$?

- Note: By Theorem 5 we expect that the eigenvalues of the random band matrix have similar properties ($k=m ; n=m r \rightarrow u=1 / r$)!

An algebraic equation (Widom, 1974)

Define the equation $(x, z \in \mathbb{C})$

$$
\begin{equation*}
\mathbf{0}=\mathbf{f}_{\mathbf{u}}(\mathbf{z}, \mathbf{x}):=\operatorname{det}\left(\mathbf{A}(\mathbf{u})^{\mathbf{T}} \mathbf{z}+\mathbf{B}(\mathbf{u})+\mathbf{A}(\mathbf{u}) \mathbf{z}^{-\mathbf{1}}-\mathbf{x} \mathbf{I}_{\mathbf{r}}\right) \tag{3}
\end{equation*}
$$

Note:

- For fixed $x \in \mathbb{C}$ there exist $2 r$ roots $z_{1}(x, u), \ldots z_{2 r}(x, u)$ of equation (3), which can ordered according to

$$
\left|z_{1}(x, u)\right| \leq\left|z_{2}(x, u)\right| \ldots \leq\left|z_{2 r}(x, u)\right|
$$

- For any $u \in(0,1)$

$$
\Gamma_{0}(u)=\left\{x \in \mathbb{C}| | z_{r}(x, u)\left|=\left|z_{r+1}(x, u)\right|\right\} \subset \mathbb{R}\right.
$$

is a union of at most r disjoint intervals.

Weak asymptotics for matrix orthonormal polynomials

Theorem 6 [Delvaux, D., 2011] Let

$$
\nu_{n}=\frac{1}{n} \sum_{j=1}^{n} \delta_{\xi_{j}^{(n)}}
$$

denote empirical distribution function of the roots of the polynomial $\mathbf{R}_{\mathbf{k}, \mathbf{n}}(\mathbf{x})$ defined by

$$
\mathbf{x} \mathbf{R}_{\mathrm{k}, \mathrm{n}}(\mathbf{x})=\mathbf{A}_{\mathrm{k}+1, \mathrm{n}} \mathbf{R}_{\mathbf{k}+\mathbf{1}, \mathbf{n}}(\mathbf{x})+\mathbf{B}_{\mathrm{k}, \mathbf{n}} \mathbf{R}_{\mathrm{k}, \mathrm{n}}(\mathbf{x})+\mathbf{A}_{\mathrm{k}, \mathrm{n}}^{\top} \mathbf{R}_{\mathrm{k}-1, \mathrm{n}}(\mathbf{x}) ; \quad \mathbf{k} \geq 0
$$

where

$$
\lim _{\frac{k}{n} \rightarrow u} \mathbf{B}_{\mathbf{k}, \mathbf{n}}=\mathbf{B}(\mathbf{u}), \lim _{\frac{k}{n} \rightarrow u} \mathbf{A}_{\mathbf{k}, \mathbf{n}}=\mathbf{A}(\mathbf{u}) .
$$

Then ν_{n} converges weakly to a measure $\mu_{0, u}$, with logarithmic potential

$$
\frac{1}{r u} \int_{0}^{u} \log \left|z_{1}(x, t) \ldots z_{r}(x, t)\right| d t+C_{u}, \quad x \in \mathbb{C} \backslash \bigcup_{0 \leq t \leq u} \Gamma_{0}(t)
$$

(here C_{u} is some constant).

Identification of the limit distribution

Theorem 7 [Delvaux, D. 2011] The measure $\mu_{0, u}$ with logarithmic potential

$$
\frac{1}{r u} \int_{0}^{u} \log \left|z_{1}(x, t) \ldots z_{r}(x, t)\right| d t+C_{u}
$$

is absolute continuous with density given by

$$
\frac{\mathbf{d} \mu_{0, \mathbf{u}}(\mathbf{x})}{\mathbf{d x}}=\frac{1}{2 \pi u r} \int_{0}^{u} \sum_{\mathrm{k}:\left|z_{k}(x, s)\right|=1}\left|\frac{\frac{\partial}{\partial \mathrm{x}} \mathbf{z}_{\mathrm{k}}(\mathrm{x}, \mathrm{~s})}{\mathbf{z}_{\mathrm{k}}(\mathrm{x}, \mathrm{~s})}\right| \mathbf{d s}
$$

Application to random block matrices

- By Theorem 5 it can be shown that the eigenvalue distribution has the same asymptotic properties as the distribution of the roots of matrix orthogonal polynomials $Q_{m, n}(x)$, where $m=n / r$
- This means

$$
\lim _{n \rightarrow \infty} \frac{m}{n}=\frac{1}{r}
$$

- Theorem 7 yields for the limiting distribution

$$
\frac{d \mu_{0,1 / r}(x)}{d x}=\frac{1}{2 \pi} \int_{0}^{1 / r} \frac{1}{\sqrt{s}} \sum_{k:\left|z_{k}(x / \sqrt{s})\right|=1}\left|\frac{z_{k}^{\prime}(x / \sqrt{s})}{z_{k}(x / \sqrt{s})}\right| d s
$$

where $z_{1}(x), z_{2}(x), \ldots, z_{2 r}(x)$ are the (ordered) roots of the equation

$$
\mathbf{0}=\mathbf{f}(\mathbf{z}, \mathbf{x}):=\operatorname{det}\left(\mathbf{A}^{\top}(\mathbf{1}) \mathbf{z}+\mathbf{B}(\mathbf{1})+\mathbf{A}(\mathbf{1}) \mathbf{z}^{\mathbf{- 1}}-\mathbf{x} \mathbf{I}_{\mathbf{r}}\right)
$$

Application to random block matrices

$$
\begin{aligned}
\mathbf{A}(\mathbf{1}): & =\sqrt{\frac{r}{2}}\left(\begin{array}{ccccc}
\sqrt{\beta_{r}} & 0 & 0 & \cdots & 0 \\
\sqrt{\beta_{r-1}} & \sqrt{\beta_{r}} & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\sqrt{\beta_{2}} & \cdots & \sqrt{\beta_{r_{-}}} & \sqrt{\beta_{r}} & 0 \\
\sqrt{\beta_{1}} & \cdots & \sqrt{\beta_{r-2}} & \sqrt{\beta_{r-1}} & \sqrt{\beta_{r}}
\end{array}\right) \in \mathbb{R}^{r \times r}, \\
\mathbf{B}(\mathbf{1}) & :=\sqrt{\frac{r}{2}}\left(\begin{array}{ccccc}
0 & \sqrt{\beta_{1}} & \sqrt{\beta_{2}} & \cdots & \sqrt{\beta_{r-1}} \\
\sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} & \cdots & \sqrt{\beta_{r-2}} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\sqrt{\beta_{r-2}} & \cdots & \sqrt{\beta_{1}} & 0 & \sqrt{\beta_{1}} \\
\sqrt{\beta_{r-1}} & \cdots & \sqrt{\beta_{2}} & \sqrt{\beta_{1}} & 0
\end{array}\right) \in \mathbb{R}^{r \times r},
\end{aligned}
$$

Eigenvalues of a 5000×5000 matrix $\left(\beta_{1}=\beta_{2}=1\right)$

Figure: Left panel: histogram of the simulated eigenvalues
Right panel: asymptotic distribution

Eigenvalues of a 5000×5000 matrix $\left(\beta_{1}=5 ; \beta_{2}=1\right)$

Figure: Left panel: histogram of the simulated eigenvalues
Right panel: asymptotic distribution

Eigenvalues of a 5000×5000 matrix

Figure: Left panel: histogram and density ($\beta_{1}=1 ; \beta_{2}=1$)
Right panel: histogram and density $\left(\beta_{1}=5 ; \beta_{2}=1\right)$

Conclusions and further research

- Optimal designs - (matrix) orthogonal polynomials - random matrices
- I did not present a solution of the design problem for the dose finding trial (it is too complicated)!

Conclusions and further research

- Optimal designs - (matrix) orthogonal polynomials - random matrices
- I did not present a solution of the design problem for the dose finding trial (it is too complicated)!
- Possible future research:
- Measure of orthogonality for matrix Chebyshev polynomials?
- Wigner block matrices (there seem to exist relations to free probability)?
- Distribution of the eigenvalues of the band matrices considered here?
- Use matrix orthogonal polynomials for solving optimal design problems?
- Matrix measures and stationary processes?

Some selected references

- Optimal design
H. Dette, F. Bretz, A. Pepelyshev and J. Pinheiro. Optimal designs for dose finding studies. J. Amer. Statist. Assoc. 103, (2008), 1225-1237.
- β-ensembles
I. Dumitriu and A. Edelmann. Matrix models for beta ensembles. J. Math. Phys. 43 (2002), 5830-5847.
H. Dette and L. Imhof. Uniform approximation of eigenvalues in Laguerre and Hermite-ensembles by roots of orthogonal polynomials. Trans. Amer. Math. Soc. 359, (2007), 4999-5018.
F.J. Dyson. The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3, (1962), 1199-1215.
- Matrix polynomials
D. Damanik, A. Pushnitski and B. Simon. The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, (2008), 1-85.
D. Damanik, R. Killip and B. Simon. Perturbations of orthogonal polynomials with periodic recursion coefficients. Ann. of Math. 171, (2010), 1931-2010.
H. Dette and W.J. Studden. Matrix measures, moment spaces and Favard's theorem for the interval $[0,1]$ and $[0, \infty]$. Linear Algebra Appl. 345 (2002), 169-193.
M.G. Krein. Infinite J-matrices and a matrix moment problem. Dokl. Akad. Nauk SSSR 69, (1949), 125-128 (in Russian).
- (Random) block matrices
A. Böttcher and B. Silbermann (1998) Introduction to Large Truncated Toeplitz Matrices. Universitext, Springer-Verlag, New York, 1998.
H. Dette and B. Reuther. Random block matrices and matrix orthogonal polynomials. J. Theor. Probab. 23, (2010), 378-400.
S. Delvaux, and H. Dette. Zeros and ratio asymptotics for matrix orthogonal polynomials Submitted for publication, (2011). arXiv:1108.5155v2
H. Widom. Asymptotic behavior of block Toeplitz matrices and determinants. Advances in Math. 13, (1974), $284-322$.

