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Outline

• black and white – the Mumford-Shah model;

• Rudin-Osher-Fatemi(ROF) model: staircasing;

• second-order models;

• denoising;

• colors – the RGB model;

• reconstructible images – uniformly sparse region.
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“sharp interface” model

Mumford-Shah model

E (u) =

∫
Ω

(
|∇u|p + |u − f |2

)
dx +

∫
S(u)
γ(ν)dHN−1

|u − f |2 . . . fidelity term
p ≥ 1, p = 1 . . . TV model

u ∈ BV (bounded variation)
Du = ∇u LNbΩ + [u]⊗ ν HN−1bS(u) + C (u)
De Giorgi, Ambrosio, Bertozzi, Carriero, Chambolle, Chan, Esedoglu, Leaci, P. L.

Lions, Luminita, Y. Meyer, Morel, Osher, et. al.

Irene Fonseca Variational Methods in Materials Science and Image Processing



Imaging
Quantum Dots

“sharp interface” model

Mumford-Shah model

E (u) =

∫
Ω

(
|∇u|p + |u − f |2

)
dx +

∫
S(u)
γ(ν)dHN−1

|u − f |2 . . . fidelity term
p ≥ 1, p = 1 . . . TV model

u ∈ BV (bounded variation)
Du = ∇u LNbΩ + [u]⊗ ν HN−1bS(u) + C (u)
De Giorgi, Ambrosio, Bertozzi, Carriero, Chambolle, Chan, Esedoglu, Leaci, P. L.

Lions, Luminita, Y. Meyer, Morel, Osher, et. al.

Irene Fonseca Variational Methods in Materials Science and Image Processing



Imaging
Quantum Dots

“sharp interface” model

Mumford-Shah model

E (u) =

∫
Ω

(
|∇u|p + |u − f |2

)
dx +

∫
S(u)
γ(ν)dHN−1

|u − f |2 . . . fidelity term
p ≥ 1, p = 1 . . . TV model

u ∈ BV (bounded variation)
Du = ∇u LNbΩ + [u]⊗ ν HN−1bS(u) + C (u)
De Giorgi, Ambrosio, Bertozzi, Carriero, Chambolle, Chan, Esedoglu, Leaci, P. L.

Lions, Luminita, Y. Meyer, Morel, Osher, et. al.

Irene Fonseca Variational Methods in Materials Science and Image Processing



Imaging
Quantum Dots

The Rudin-Osher-Fatemi Model

ROFλ,f (u) := |u′|(]a, b[) + λ

∫ b

a
(u − f )2 dx u ∈ BV (]a, b[)

Lemma [Exact minimizers for ROFλ,f ].

f : [a, b]→ [0, 1] nondecreasing,
f+(a) = 0 and f−(b) = 1,
The unique minimizer of ROFλ,f is

u(x) :=


c1 if a ≤ x ≤ f −1(c1) ,

f (x) if f −1(c1) < x ≤ f −1(c2) ,

c2 if f −1(c2) < x ≤ b

f −1(c) := inf{x ∈ [a, b] : f (x) ≥ c}, 0 < c1 < c2 < 1 s.t.

2λ
∫ f −1(c1)
a (c1 − f (x)) dx = 1, 2λ

∫ b
f −1(c2)(f (x)− c2) dx = 1.
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The Rudin-Osher-Fatemi Model: staircasing
T. Chan, A. Marquina and P. Mulet, SIAM J. Sci. Comput. 22 (2000), 503–516
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The Rudin-Osher-Fatemi Model: staircasing

Staircasing: “ramps” (i.e. affine regions) in the original image yield
staircase-like structures in the reconstructed image.
Original edges are preserved BUT artificial/spurious ones are created
. . . “staircasing effect”
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The Rudin-Osher-Fatemi Model: staircasing. An example.

Other examples of staircasing also by Caselles, Chambolle and Novaga

f (x) := x , x ∈ [0, 1] . . . original 1D image
add “noise”

hn (x) :=
i

n
− x if

i − 1

n
≤ x <

i

n
, i = 1, . . . , n

resulting degraded 1D image

fn (x) :=
i

n
if

i − 1

n
≤ x <

i

n
, i = 1, . . . , n

Rmk: even though hn → 0 uniformly, the reconstructed image un

preserves the staircase structure of fn.

Theorem.

λ > 4, un . . . unique minimizer of ROFλ,fn in BV (]0, 1[). For n
sufficiently large there exist 0 < an < bn < 1,
an → 1√

λ
, bn → 1− 1√

λ
,

un = fn on [an, bn] , un is constant on [0, an) and (bn, 1].
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Second Order Models: The Blake-Zisserman Model

Leaci and Tomarelli, et.al.

E (u) =

∫
Ω

W (∇u,∇2u) dx + |u − f |2dx +

∫
S(∇u)

γ(ν)dHN−1

Also, Geman and Reynolds, Chambolle and Lions, Blomgren, Chan and Mulet, Kinderman, Osher and Jones, etc.
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Chan et.al. Model

With G. Dal Maso, G. Leoni, M. Morini

Fp(u) =

∫
Ω

(
|∇u|+ |u − f |2

)
dx +

∫
Ω
ψ(|∇u|)|∇2u|p dx

p ≥ 1, ψ ∼ 0 at ∞

∫ ∞
∞

(ψ(t))1/p dt < +∞, inf
t∈K

ψ(t) > 0

for every compact K ⊂ R

All 1D!
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p ∈ [1,+∞)

Fp(u) :=

∫ b

a
|u′| dx +

∫ b

a
ψ(|u′|)|u′′|p dx

E.g.

ψ(t) :=
1

(1 + t2)
1
2

(3p−1)

the functional becomes

∫ b

a
|u′| dx +

∫
Graph u

|k |p dH1

k . . . curvature of the graph of u
in many computer vision and graphics applications, such as corner
preserving geometry, denoising and segmentation with depth
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a few results. . .

framework: minimization problem is well posed;

compactness;

integral representation of the relaxed functional:

Fp (u) := inf

{
lim inf
k→+∞

Fp (uk) : uk → u in L1(]a, b[)

}

higher order regularization eliminates staircasing effect
fk := f + hk , f smooth, hk

∗
⇀ 0

Is uk smooth for k >> 1 ?
Yes: ||uk − u||W 1,p → 0 if p = 1, ||uk − u||C1 → 0 if p > 1

Note: piecewise constant functions are approximable by sequences
with bounded energy only for p = 1!
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Denoising

With R. Choksi and B. Zwicknagl

Given: Measured signal, disturbed by noise

f = f0 + n, n − noise

Want: Reconstruction of clean f0

Tool: Regularized approximation

Minimize J(u) := ||u||kH + λ||u − f ||mW , ; k ,m ∈ N

Questions: “Good” choice of
• fidelity measure || · ||W
• regularization measure || · ||H
• tunning parameter λ
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Properties of a “Good” Model

J(u) := ||u||kH + λ||u − f ||mW
• consistency: “simple” clean signals f should be recovered exactly

J(f ) ≤ J(u) for all u

• for a sequence of noise hn ⇀ 0, minimizers of the disturbed
functionals

Jn(u) := ||u||kH + λ||u − f−hn||mW k,m ∈ N

should converge to minimizers of J

Irene Fonseca Variational Methods in Materials Science and Image Processing
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Exact Reconstruction - Consistency

Question: For which f can we reconstruct f exactly?

For all u 6= f

J(f ) ≤ J(u)⇔ ||f ||kH ≤ ||u||kH + λ||u − f ||mW

Hence exact reconstruction if and only if

λ ≥ sup
u 6=f

||f ||kH − ||u||nH
λ||u − f ||mW

So . . . when is

sup
u 6=f

||f ||kH − ||u||kH
λ||u − f ||mW

< +∞?

Irene Fonseca Variational Methods in Materials Science and Image Processing
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Bad News if the Fidelity Term Occurs With Power m > 1!

If m > 1, ||f ||kH 6= 0 then

sup
u 6=f

||f ||kH − ||u||kH
λ||u − f ||mW

= +∞

Choose uε := (1− ε)f . Then

sup
u 6=f

||f ||kH − ||u||kH
λ||u − f ||mW

≥ sup
0<ε<1

(1− (1− ε)k)||f ||kH
εm||f ||mW

= sup
0<ε<1

||f ||kH
||f ||mW

k∑
j=1

(−1)j+1

(
k

j

)
e j−m =∞

Classical ROF: J(u) = |u|BV + λ||u − f ||2L2(Ω)
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Weakly Vanishing Noise

Assume hn ⇀ 0 weakly in W.
Disturbed functionals

Jn(u) := ||u||kH + λ||u − f−hn||mW

Question: What happens in the limit?

• convergence of minimizers to minimizers?
• convergence of the energies?

Irene Fonseca Variational Methods in Materials Science and Image Processing
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Γ-convergence

Assume that
• H is compactly embedded in W
• Brezis-Lieb Type Condition: For all f ∈ W

||f ||kW = lim
n→∞

(||f−hn||mW − ||hn||mW)

Recall:
Jn(u) := ||u||kH + λ||u − f−hn||mW

Theorem.

Jn Γ-converge to

J̃(u) := ||u||kH + λ||u − f ||mW + λ lim
n→∞

||hn||mW

with respect to the weak-* topology in H.
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Examples: The Brezis-Lieb Condition Holds

• W is a Hilbert space, m = 2

if hn ⇀ 0 in W then

||f−hn||2W−||hn||2W = ||f ||2W+||hn||2W−2(f , hn)W−||hn||2W → ||f ||2W

E.g., hn ⇀ 0 in L2(Ω)

Jn(u) := ||u||W 1,2(Ω) + λ||u − f−hn||2L2(Ω)

Then Jn Γ-converge to

J̃(u) := ||u||W 1,2(Ω) + λ||u − f ||2L2(Ω) + λ lim
n→∞

||hn||2L2(Ω)
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Concentrations: The Brezis-Lieb Condition Holds

• Can handle concentrations

Let hn ⇀ 0 in Lp(Ω) and pointwise a.e. to 0

Brezis-Lieb Lemma

0 < p <∞, un → u a.e., supn ||un||Lp <∞
Then

lim
n

(
||un||pLp(Ω) − ||un − u||pLp(Ω)

)
= ||u||pLp(Ω)

E.g.

hn(x) :=

{
n − n2x 0 ≤ x ≤ 1/n
0 1/n < x ≤ 1

Irene Fonseca Variational Methods in Materials Science and Image Processing
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Vector-Valued: Inpainting/Recolorization

With G. Leoni, F. Maggi, M. Morini

Restoration of color images by vector-valued BV functions

Recovery is obtained from few, sparse complete samples and from
a significantly incomplete information
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inpainting; recovery of damaged frescos

Figure: A fresco by Mantegna damaged during Second World War.

RGB model: u0 : R → R3 color image, u0 = (u1
0 , u

2
0 , u

3
0) channels

L : R3 → R L(y) = L(e · y) projection on gray levels

L increasing function, e ∈ S2

L(u0) : R → R gray level associated with u0.
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inpainting: RGB model

D ⊂ R ⊂ R2 . . . inpainting region
RGB
observed (u0, v0)
u0 . . . correct information on R \ D
v0 . . . distorted information . . . only gray level is known on D;
v0 = Lu0

L : R3 → R . . . e.g. L(u) := 1
3 (r + g + b) or L(ξ) := ξ · e for some

e ∈ S2

Goal

to produce a new color image that extends colors of the fragments
to the gray region, constrained to match the known gray level
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The variational approach by Fornasier-March

Problem: Reconstruct u0 from the knowledge of L(u0) in the
damaged region D and of u0 on R \ D.

Fornasier (2006) proposes to solve:

min
u∈BV (R;R3)

|Du|(R)+λ1

∫
D
|L(u)−L(u0)|2 dx +λ2

∫
R\D
|u−u0|2 dx

λ1, λ2 > 0 are fidelity parameters.

Studied by Fornasier-March (2007)

Related work by Kang-March (2007), using the
Brightness/Chromaticity decomposition model.
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a couple of questions. . .

“optimal design” : what is the “best” D? How much color do
we need to provide? And where?

are we creating spurious edges?

For a “cartoon” u in SBV , i.e.

Du = ∇uL2bR + (u+ − u−)⊗ νH1bS(u)

its edges are in . . . spt Dsu = S(u)

sptDsui ⊂ sptDs(L(u0))?
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Two reconstructions by Fornasier-March
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Our analysis

How faithful is the reconstruction in the infinite fidelity limit ?
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Our analysis

How faithful is the reconstruction in the infinite fidelity limit ?

Sending λ1 and λ2 →∞ in

min
u∈BV (R;R3)

|Du|(R)+λ1

∫
D
|L(u)−L(u0)|2 dx +λ2

∫
R\D
|u−u0|2 dx
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Our analysis

How faithful is the reconstruction in the infinite fidelity limit ?
the problem becomes

min
u ∈ BV (R;R3)

|Du|(R) (P)

subject to u = u0 on R \ D and L(u · e) = L(u0 · e) in D.
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Our analysis

How faithful is the reconstruction in the infinite fidelity limit ?
the problem becomes:

min
u ∈ BV (R;R3)

|Du|(R) (P)

subject to u = u0 in R \ D and u · e = u0 · e in D.

Definition

u0 is reconstructible over D if it is the unique minimizer of (P).
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λ1 = λ2 =∞

(P) inf
{
|Du|(R) : u ∈ BV (R;R3), Lu = Lu0 in D, u = u0 on R \ D

}

Theorem

u0 ∈ BV (R;R3) and D open Lipschitz domain. Then (P) has a
minimizer.

isoperimetric inequality → boundedness in BV
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admissible images

Find conditions on the damaged region D which render u0

reconstructible
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admissible images

Find conditions on the damaged region D which render u0

reconstructible

Mathematical simplification: Restrict the analysis to piecewise
constant images u0
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admissible images

Find conditions on the damaged region D which make u0

reconstructible

Mathematical simplification: Restrict the analysis to piecewise
constant images u0

R = Γ ∪
N⋃

k=1

Ωk , u0 =
N∑

k=1

ξk1Ωk
,
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Our analysis

Recall that u0 =
∑N

k=1 ξk1Ωk
is reconstructible over D if it is

the unique minimizer to

min
u ∈ BV (R;R3)

|Du|(R) (P)

subject to u = u0 in R \ D and u · e = u0 · e in D.

Strengthened notion of reconstructibility:

Definition

u0 is stably reconstructible over D if there exists ε > 0 such that
all u of the form

u =
N∑

k=1

ξ′k1Ωk
, with max

1≤k≤N
|ξ′k − ξk | < ε ,

are reconstructible over D.
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reconstructible images

when is an admissible image u0 reconstructible over a damaged
region S?

Answer: NO when a pair of neighboring colors ξh and ξk in u0

share the same gray level, i.e., if H1(∂Ωk ∩ ∂Ωh) > 0 and
Lξh = Lξk
Answer: YES if an algebraic condition involving the values of the
colors and the angles of the corners possibly present in Γ is
satisfied . . . quantitative validation of the model’s accuracy

Minimal requirement: must be reconstructible over S = Γ(δ) for
some δ > 0, where

Γ(δ) := {x ∈ R : dist(x , Γ) < δ}
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u0 does not have neighboring colors with the same gray
level

zk(x) := P

(
ξk − ξh
|ξk − ξh|

)
if x ∈ ∂Ωk ∩ ∂Ωh ∩ R , h 6= k ,

where P is the orthogonal projection on 〈e〉⊥

P(ξ) := ξ − (ξ · e)e

u0 does not have neighboring colors with the same gray level IFF

sup
1≤K≤N

||zk ||L∞ < 1
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A simple counterexample when ‖zk‖∞ < 1 is not satisfied

Original image u0:
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Adjoint colors have the same gray levels: may create
spurious edges

Original image u0:
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Adjoint colors have the same gray levels: may create
spurious edges

A simple analytical counterexample

Original image u0:

Resulting image u:
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Adjoint colors have the same gray levels: may create
spurious edges

A simple analytical counterexample

Original image u0:

Resulting image u:

A spurious contour appears!
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Minimality conditions

Theorem (Necessary and sufficient minimality conditions)

D ⊂ R Lipschitz, H1(∂D ∩ Γ) = 0. Then the following two
conditions are equivalent:

(i) u0 is stably reconstructible over D;

(ii) there exists a tensor field M : D → 〈e〉⊥ ⊗ R2 such that
div M = 0 in D

‖M‖∞ < 1 and M[νΩk
] = −zk on D ∩ ∂Ωk .

The tensor field M is called a calibration for u0 in D.
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1-Laplacian . . .

Reformulate the minimization problem (P) as

inf
{

F (u,D) : u ∈ BV (D;R3) , u · e = u0 · e L2-a.e. in D
}
,

where

F (u,D) := |Du|(D) +
N∑

k=1

∫
∂D∩Ωk

|u − ξk | dH1 .

Euler-Lagrange equation: formally given by the 1-Laplacian
Neumann problem{

div Du
|Du| ‖ e in D ,

P
(

Du
|Du| [νD ]

)
= −z on ∂D , z := P

(
u−ξk
|u−ξk |

)
Since this equation is in general not well-defined, Du

|Du| is replaced
by the calibration M

Hence, the conditions on M can be considered as a weak formulation
of the Euler-Lagrange equations of F .
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Necessary and sufficient minimality conditions

Writing M = (M(1),M(2)), locally there exists a Lipschitz
function f = (f (1), f (2)) such that ‖∇f ‖∞ < 1,

[M(i)]⊥ = −∇f i and ∂τΩk
f = M[νΩk

] = −zk on D∩∂Ωk .

Hence, the construction of the calibration can be often
reduced to a Lipschitz extension problem
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reduced to a Lipschitz extension problem
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When is u0 stably reconstructible over D?

Recall the reconstruction

Question: what happens when the exact information on colors
is known only in a region of possibly small total area but
uniformly (randomly) distributed?
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ε-uniformly distributed undamaged regions

Figure: An ε-uniformly distributed
undamaged region.
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Figure: An ε-uniformly distributed
undamaged region.

Figure: The damaged region
contains a δ-neighborhood
Γ(δ) of Γ.
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ε-uniformly distributed undamaged regions

Figure: An ε-uniformly distributed
undamaged region.

Figure: The damaged region
contains a δ-neighborhood
Γ(δ) of Γ.

It is natural to assume that u0 is stably reconstructible over Γ(δ)
for some δ > 0.
Can treat more general non-periodic geometries, e.g. Q(x , ω(ε)) is
replaced by a closed connected set with diameter of order ω(ε)
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A natural assumption

u0 is stably reconstructible over Γ(δ) for some δ > 0.

⇒
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uniformly sparse region: an asymptotic result

The TV model provides asymptotically exact reconstruction on
generic color images . . . No info on gray levels!!!

Theorem

u0 ∈ BV (R;R3) ∩ L∞(R;R3)

Dε ⊂ R ∩

 ⋃
x∈εZ2

Q(x , ε) \ Q(x , ω(ε))

 ,

Let uε be minimizer of

inf {|Du|(R) : u = u0 on R \ Dε}

Then
uε → u0 in L1
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Admissible ε-uniformly distributed undamaged regions

Figure: Denote by Dε the damaged
region

Figure: The original u0.
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Admissible ε-uniformly distributed undamaged regions

Figure: Denote by Dε the damaged
region

Figure: The original u0.

Theorem

Let u0 be stably reconstructible over Γ(δ) for some δ > 0. Assume
that

lim
ε→0+

ω(ε)

ε
= 0 , lim

ε→0+

ω(ε)

ε2
=∞ .

Then, there exists ε0 > 0 such that u0 is stably reconstructible
over Dε for all ε ≤ ε0.
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uniformly sparse region: scaling ε2 from below for ω(ε) is
sharp

if ω(ε) ≤ cε2 cannot expect exact reconstruction.

Counterexample with
ω(ε) ≤ cε2

for c small enough

u0 = χΩξ0, R := (0, 3)× (0, 3), Ω := (1, 2)× (1, 2).

Irene Fonseca Variational Methods in Materials Science and Image Processing



Imaging
Quantum Dots

Outline

• wetting and zero contact angle;

• surface diffusion in epitaxially strained solids;

• shapes of islands;

• steps and terraces in epitaxially strained islands.
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The Context

With N. Fusco, G. Leoni, M. Morini

Strained epitaxial films on a relatively thick substrate

plane linear elasticity (In-GaAs/GaAs or SiGe/Si)

free surface of film is flat until reaching a critical thikness

lattice misfits between substrate and film induce strains in the
film

Complete relaxation to bulk equilibrium ⇒ crystalline
structure would be discontinuous at the interface

Strain ⇒ flat layer of film morphologically unstable or
metastable after a critical value of the thickness is reached
(competition between surface and bulk energies)
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islands

To release some of the elastic energy due to the strain: atoms on
the free surface rearrange and morphologies such as formation of
island (quatum dots) of pyramidal shapes are energetically more
economical
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quantum dots: the profile . . .
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some potential applications

optical and optoelectric devices (quantum dot laser), information
storage, . . .

electronic properties depend on the regularity of the dots, size,
spacing, etc.
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some questions

explain how isolated islands are separated by a wetting layer

validate the zero contact angle between wetting layer and the
island
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wetting layer and zero contact angle, islands
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Sharp Interface Model

Brian Spencer, Bonnetier and Chambolle, Chambolle and Larsen; Caflish, W. E, Otto, Voorhees, et. al.

Ωh := {x = (x , y) : a < x < b, y < h (x)}

h : [a, b]→ [0,∞) ... graph of h is the profile of the film

y = 0 . . . film/substrate interface

mismatch strain (at which minimum energy is attained)

E0 (y) =

{
e0i⊗ i if y ≥ 0,
0 if y < 0,
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more on the model

e0 > 0
i the unit vector along the x direction

elastic energy per unit area: W (E− E0 (y))

W (E) :=
1

2
E · C [E] , E (u) :=

1

2
(∇u + (∇u)T )

C . . . positive definite fourth-order tensor

film and the substrate have similar material properties, share the same

homogeneous elasticity tensor C
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sharp interface model

ϕ0 (y) :=

{
γfilm if y > 0,
γsub if y = 0.

Total energy of the system:

F (u,Ωh) :=

∫
Ωh

W (E (u) (x)− E0 (y)) dx +

∫
Γh

ϕ0 (y) dH1 (x) ,

Γh := ∂Ωh ∩ ((a, b)× R) . . . free surface of the film
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hard to implement . . .

Sharp interface model is difficult to be implemented numerically.
Instead: boundary-layer model; discontinuous transition is
regularized over a thin transition region of width δ (“smearing
parameter”).

Eδ (y) :=
1

2
e0

(
1 + f

(y

δ

))
i⊗ i, y ∈ R,

ϕδ (y) := γsub + (γfilm − γsub) f
(y

δ

)
, y ≥ 0,

f (0) = 0, lim
y→−∞

f (y) = −1, lim
y→∞

f (y) = 1.
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regularized energy

Regularized total energy of the system

Fδ (u,Ωh) :=

∫
Ωh

W (E (u) (x)− Eδ (y)) dx +

∫
Γh

ϕδ (y) dH1 (x)

Two regimes :

{
γfilm ≥ γsub

γfilm < γsub
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wetting, etc.

asymptotics as δ → 0+

γfilm < γsub

relaxed surface energy density is no longer discontinuous: it is
constantly equal to γfilm. . . WETTING!

more favorable to cover the substrate with an infinitesimal
layer of film atoms (and pay surface energy with density γfilm)
rather than to leave any part of the substrate exposed (and
pay surface energy with density γsub)

wetting regime: regularity of local minimizers (u,Ω) of the
limiting functional F∞ under a volume constraint.
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cusps and vertical cuts

The profile h of the film for a locally minimizing configuration is
regular except for at most a finite number of cusps and vertical cuts
which correspond to vertical cracks in the film.

[Spencer and Meiron]: steady state solutions exhibit cusp
singularities, time-dependent evolution of small disturbances of the
flat interface result in the formation of deep grooved cusps (also
[Chiu and Gao]); experimental validation of sharp cusplike features
in SI0.6 Ge0.4

zero contact-angle condition between the wetting layer and islands
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regularization . . .

conclude that the graph of h is a Lipschitz continuous curve
away from a finite number of singular points (cusps, vertical
cuts).

. . . and more: Lipschitz continuity of h +blow up
argument+classical results on corner domains for solutions of
Lamé systems of h ⇒ decay estimate for the gradient of the
displacement u near the boundary ⇒ C 1,α regularity of h and
∇u; bootstrap.

this takes us to linearly isotropic materials
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Linearly isotropic elastic materials

W (E) =
1

2
λ [tr (E)]2 + µ tr

(
E2
)

λ and µ are the (constant) Lamé moduli

µ > 0 , µ+ λ > 0 .

Euler-Lagrange system of equations associated to W

µ∆u + (λ+ µ)∇ (div u) = 0 in Ω.
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Regularity of Γ: No corners

Γsing := Γcusps ∪ {(x , h(x)) : h(x) < h−(x)}

Already know that Γsing is finite.

Theorem

(u,Ω) ∈ X . . . δ-local minimizer for the functional F∞.
Then Γ \ Γsing is of class C 1,σ for all 0 < σ < 1

2 .

As an immediate corollary, get the zero contact-angle condition

Corollary

(u,Ω) ∈ X . . . local minimizer for the functional F∞.
If z0 = (x0, 0) ∈ Γ \ Γsing then h′(x0) = 0.
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next . . .

3D case!

surface diffusion in epitaxially strained solids (2D)

shapes of islands

Irene Fonseca Variational Methods in Materials Science and Image Processing



Imaging
Quantum Dots

surface diffusion in epitaxially strained solids

With N. Fusco, G. Leoni, M. Morini

Einstein-Nernst volume preserving evolution law:

V = C ∆Γµ

V . . . normal velocity of evolving interface
∆Γ . . . tangential Laplacian
µ . . . chemical potential, first variation of the free-energy functional∫

Ωh

W (E(u)) dx +

∫
Γh

ϕ(θ)dH1
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ill-posed . . . so add a perturbation

Get (with C = 1)

V = ((ϕθθ + ϕ)k + W (E(u)))σσ

k . . . curvature of Γh

(·)σ . . . tangential derivative
u(·, t) . . . elastic equilibrium in Ωh(·,t) under periodic b. c.

V =

(
(ϕθθ + ϕ)k + W (E(u))−ε

(
kσσ +

1

2
k3

))
σσ

H−1- gradient flow for (Cahn and Taylor)∫
Ωh

W (E(u)) dx +

∫
Γh

(
ϕ(θ) +

ε

2
k2
)

dH1

De Giorgi’s minimizing movements: short time existence,
uniqueness, regularity
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shapes of islands

With A. Pratelli and B. Zwicknagl

We proved that the shape of the island evolves with the size:

small islands always have the half-pyramid shape, and as the
volume increases the island evolves through a sequence of shapes
that include more facets with increasing steepness – half pyramid,
pyramid, half dome, dome, half barn, barn

This validates what was experimentally and numerically obtained
in the physics and materials science literature

More in progress! . . .
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