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Preliminaries: The Dynkin diagrams

The Dynkin diagrams (of type ADE)
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Definitions: quiver mutation, cluster algebras

A quiver is an oriented graph

A quiver Q is an oriented graph: It is given by
@ aset Qq (the set of vertices)

@ aset Q (the set of arrows)
@ two maps

@ s: Q) — Q (taking an arrow to its source)
o t: Qy — @ (taking an arrow to its target).

A quiver is a ‘category without composition’.
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Definitions: quiver mutation, cluster algebras

A quiver can have loops, cycles, several components.

The quiver Z\} 1252 £ 3 is an orientation of the Dynkin
diagram Az : 1 —2——3.

Example

Q: 3 (56
/N
B
14V>2

v

We have Qy = {1,2,3,4,5,6}, Q; = {a,5,...}.
ais a loop, (5,7v) is a 2-cycle, (\, u,v) is a 3-cycle.
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Definitions: quiver mutation, cluster algebras

Definition of quiver mutation

Let Q be a quiver without loops nor 2-cycles
(from now on always assumed).
Definition (Fomin-Zelevinsky)

Let j € Qo. The mutation ;( Q) is the quiver obtained from Q as
follows

1) for each subquiver ii>j —%> k , add a new arrow

[ef] K

2) reverse all arrows incident with J;

3) remove the arrows in a maximal set of pairwise disjoint
2-cycles (e.g. e<—— e yields e —— e | ‘2-reduction’).
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Definitions: quiver mutation, cluster algebras

Examples of quiver mutation

2<:>3
2)
1
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3)
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Definitions: quiver mutation, cluster algebras

More complicated examples: Google ‘quiver mutation’!
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Recall: We wanted to define cluster algebras!
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Seeds and their mutations

Definition

A seed is a pair (R, u), where
a) R is a quiver with n vertices;

b) u={u,...,un}is afree generating set of the field
Q(X1 9ooo aXn)'

Example: (1 — 2 — 3,{x1, X2, X3}) = (X{ = X2 — X3).

Definition

For a vertex j of R, the mutation p;(R, u) is (R, u"), where
a) R' = w(R);
b) v = u\ {y} U{u}, with u; defined by the exchange

relation
/ —_— .
Uiy = || u; + || Uy

a!rOW‘S a‘TTOWS
i—j j—k




Definitions: quiver mutation, cluster algebras

An example

X{ —= Xo —= X3
HA ;1,21 H3

I
1Jr7)(2<—X2*>X3 X1<—%2X3<—X3 X{ — Xo <— 1+X2

N N
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Definitions: quiver mutation, cluster algebras

Clusters, cluster variables and the cluster algebra

Let Q be a quiver with n vertices.
a) The initial seed is (Q, x) = (Q, {X1,...,Xn})-

b) A cluster is an n-tuple u appearing in a seed (R, u)
obtained from (Q, x) by iterated mutation.

c) The cluster variables are the elements of the clusters.

d) The cluster algebra Ag is the subalgebra of the field
Q(x4, ..., Xxn) generated by the cluster variables.

e) A cluster monomial is a product of powers of cluster
variables which all belong to the same cluster.

If Q is mutation equivalent to Q’, then Aq = Ag.
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Fundamental properties

Let Q be a connected quiver.

Theorem (Fomin-Zelevinsky, 2002-03 [7] [8])

a) All cluster variables are Laurent polynomials.

b) There is only a finite number of cluster variables iff Q is
mutation-equivalent to an orientation A of a Dynkin
diagram A. Then A is unique and called the
cluster type of Q.

Examples for a) and b): Az, Dj.

Positivity conjecture (Fomin-Zelevinsky)

All cluster variables are Laurent polynomials with non negative
coefficients. )

Remark

Partial results: [16] [29] [4] [27] [3] [30] [24] ... . Still wide open
in the general case.
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Application in Lie theory, after B. Leclerc et al.

Construction of a large part of the dual semi-canonical
basis

Let g be a simple complex Lie algebra of type ADE and
Uj (g) the positive part of the Drinfeld-Jimbo quantum group.

Theorem (Geiss-Leclerc-Schréer)

a) (April 2011 [11]): Uj{ (g) admits a canonical structure of
quantum cluster algebra.

b) (2006 [12]): All cluster monomials belong to Lusztig’s dual
semi-canonical basis of the specialization of Uj (g) at

qg=1.

1) This agrees with Fomin—Zelevinsky’s original hopes.
2) Main tool: add. categorification using preproj. algebras.
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Application to discrete dynamical systems: periodicity

The periodicity conjecture, |

@ Origin: Alexey Zamolodchikov’s study of the thermodyn.
Bethe ansatz (1991).

@ Applications in number theory: identities for the Rogers
dilogarithm.

@ A and A’ two Dynkin diagrams with vertex sets /, /',
@ h, i their Coxeter numbers, A, A’ their adjacency matrices,
@ Y variableswhereic I, i’ €l t e Z.

Y-system associated with (A, A’)

(i) T
| Yi,i’,tq )/I.,I",t+1 = HIG’( B, )

—1\&
(i,1")—(, 1) [yer(t+ Y
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Application to discrete dynamical systems: periodicity

The periodicity conjecture, Il

Periodicity conjecture (Al. Zamolodchikov 1991, [31] [21] [22])

All solutions to this system are periodic of period dividing
2(h+ H).

Case Authors

(An, A1) | Frenkel-Szenes (1995) and Gliozzi-Tateo (1996)
(A, Ay) | Fomin-Zelevinsky (2003)

(An, Am) | Volkov (2007), Szenes (2006), Henriques (2007)

Theorem (K, 2010)
The conjecture holds for (A, A).

Tools: Link to cluster algebras, additive categorification using
the cluster category constructed from quiver representations.
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Application to discrete dynamical systems: periodicity

Link to cluster algebras: Square product quivers

Example: A400A3

O<— 0@ —0<—©0

!
O
J
(]

The conjecture holds iff the sequence of seeds

i u+ = sequence of mutations at all o.
- - pu— = sequence of mutations at all e.
(©)

<~ 0 —

i S0 St S

of the (principal extension of the) square product Q = AOA’ is
periodic of period dividing 2(h + H').
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Application to discrete dynamical systems: periodicity

Combinatorial periodicity

Let D be any quiver containing ACA" as a full subquiver. Then

()™ (D) = D.

A local and an exotic example

local:  (As,As): h+H=6+5=11 /\/\

.<—O—>.<—O—>.

bovoh

»oeo»oeo
vor o
- @ < O >
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exotic: (Es,E7): h+H =12+18=230

NN
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- 0 <
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Application to discrete dynamical systems: periodicity

Summary

@ Cluster algebras are commutative algebras with a rich
combinatorial structure.

@ They have important applications in Lie theory, in discrete
dynamical systems and in many other subjects.

@ Do not forget to google ‘quiver mutation’!
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