Preliminaries: The Dynkin diagrams
Definitions: quiver mutation, cluster algebras
Application in Lie theory, after B. Leclerc et al.
Application to discrete dynamical systems: periodicity

Cluster algebras and applications

Bernhard Keller

Université Paris Diderot - Paris 7

DMV Jahrestagung Köln, 22. September 2011

Context

Preliminaries: The Dynkin diagrams Definitions: quiver mutation, cluster algebras Application in Lie theory, after B. Leclerc et al. Application to discrete dynamical systems: periodicity

Plan

- Preliminaries: The Dynkin diagrams
- Definitions: quiver mutation, cluster algebras
- 3 Application in Lie theory, after B. Leclerc et al.
- 4 Application to discrete dynamical systems: periodicity

The Dynkin diagrams (of type ADE)

Name	Graph	n	Cox. nber
An	• •	≥ 1	n + 1
D _n	•>•	≥ 4	2n – 2
<i>E</i> ₆	•••	6	12
E ₇	•—•—•—•	7	18
E ₈	• — • — • — • — • — •	8	30

A quiver is an oriented graph

Definition

A quiver Q is an oriented graph: It is given by

- a set Q_0 (the set of vertices)
- a set Q_1 (the set of arrows)
- two maps
 - $s: Q_1 \rightarrow Q_0$ (taking an arrow to its source)
 - $t: Q_1 \rightarrow Q_0$ (taking an arrow to its target).

Remark

A quiver is a 'category without composition'.

A quiver can have loops, cycles, several components.

Example

The quiver \vec{A}_3 : $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ is an orientation of the Dynkin diagram A_3 : $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$.

Example

We have $Q_0 = \{1, 2, 3, 4, 5, 6\}$, $Q_1 = \{\alpha, \beta, ...\}$. α is a *loop*, (β, γ) is a 2-*cycle*, (λ, μ, ν) is a 3-*cycle*.

Definition of quiver mutation

Let *Q* be a quiver without loops nor 2-cycles (from now on always assumed).

Definition (Fomin-Zelevinsky)

Let $j \in Q_0$. The *mutation* $\mu_j(Q)$ is the quiver obtained from Q as follows

- 1) for each subquiver $i \xrightarrow{\beta} j \xrightarrow{\alpha} k$, add a new arrow $i \xrightarrow{[\alpha\beta]} k$;
- 2) reverse all arrows incident with j;
- 3) remove the arrows in a maximal set of pairwise disjoint 2-cycles (e.g. → yields → , '2-reduction').

Examples of quiver mutation

A simple example:

1)

2)

3)

More complicated examples: Google 'quiver mutation'!

Recall: We wanted to define cluster algebras!

Seeds and their mutations

Definition

A seed is a pair (R, u), where

- a) R is a quiver with n vertices;
- b) $u = \{u_1, \dots, u_n\}$ is a free generating set of the field $\mathbb{Q}(x_1, \dots, x_n)$.

Example: $(1 \rightarrow 2 \rightarrow 3, \{x_1, x_2, x_3\}) = (x_1 \rightarrow x_2 \rightarrow x_3).$

Definition

For a vertex j of R, the mutation $\mu_j(R, u)$ is (R', u'), where

- a) $R' = \mu_i(R)$;
- b) $u' = u \setminus \{u_j\} \cup \{u'_j\}$, with u'_j defined by the exchange relation

$$u_j u_j' = \prod_{\substack{\mathsf{arrows} \ i o j}} u_i + \prod_{\substack{\mathsf{arrows} \ j o k}} u_k.$$

An example

Clusters, cluster variables and the cluster algebra

Let Q be a quiver with n vertices.

Definition

- a) The initial seed is $(Q, x) = (Q, \{x_1, \dots, x_n\})$.
- b) A cluster is an n-tuple u appearing in a seed (R, u) obtained from (Q, x) by iterated mutation.
- c) The cluster variables are the elements of the clusters.
- d) The cluster algebra A_Q is the subalgebra of the field $\mathbb{Q}(x_1, \dots, x_n)$ generated by the cluster variables.
- e) A cluster monomial is a product of powers of cluster variables which all belong to the same cluster.

Remark

If Q is mutation equivalent to Q', then $\mathcal{A}_Q \stackrel{\sim}{\to} \mathcal{A}_{Q'}$.

Fundamental properties

Let Q be a connected quiver.

Theorem (Fomin-Zelevinsky, 2002-03 [7] [8])

- a) All cluster variables are Laurent polynomials.
- There is only a finite number of cluster variables iff Q is mutation-equivalent to an orientation Δ of a Dynkin diagram Δ. Then Δ is unique and called the cluster type of Q.

Examples for a) and b): A_3 , D_4 .

Positivity conjecture (Fomin-Zelevinsky)

All cluster variables are Laurent polynomials with non negative coefficients.

Remark

Partial results: [16] [29] [4] [27] [3] [30] [24] Still wide open in the general case.

Sergey Fomin University of Michigan

Andrei Zelevinsky Northeastern University

Construction of a large part of the dual semi-canonical basis

Let \mathfrak{g} be a simple complex Lie algebra of type ADE and $U_q^+(\mathfrak{g})$ the positive part of the Drinfeld-Jimbo quantum group.

Theorem (Geiss-Leclerc-Schröer)

- a) (April 2011 [11]): $U_q^+(\mathfrak{g})$ admits a canonical structure of quantum cluster algebra.
- b) (2006 [12]): All cluster monomials belong to Lusztig's dual semi-canonical basis of the specialization of $U_q^+(\mathfrak{g})$ at q=1.

Remarks

- 1) This agrees with Fomin–Zelevinsky's original hopes.
- 2) Main tool: add. categorification using preproj. algebras.

The periodicity conjecture, I

- Origin: Alexey Zamolodchikov's study of the thermodyn. Bethe ansatz (1991).
- Applications in number theory: identities for the Rogers dilogarithm.

Notation

- Δ and Δ' two Dynkin diagrams with vertex sets I, I',
- h, h' their Coxeter numbers, A, A' their adjacency matrices,
- $Y_{i,i',t}$ variables where $i \in I$, $i' \in I'$, $t \in \mathbb{Z}$.

Y-system associated with (Δ, Δ')

$$\begin{array}{c} (i,j') \\ | \\ (i,i') - (j,i') \end{array} \quad Y_{i,i',t-1} Y_{i,i',t+1} = \frac{\prod_{j \in I} (1 + Y_{j,i',t})^{a_{ij}}}{\prod_{j' \in I'} (1 + Y_{i,j',t}^{-1})^{a'_{i'j'}}}.$$

The periodicity conjecture, II

Periodicity conjecture (Al. Zamolodchikov 1991, [31] [21] [22])

All solutions to this system are periodic of period dividing 2(h + h').

Case	Authors
(A_n,A_1)	Frenkel-Szenes (1995) and Gliozzi-Tateo (1996)
(Δ, A_1)	Fomin-Zelevinsky (2003)
(A_n,A_m)	Volkov (2007), Szenes (2006), Henriques (2007)

Theorem (K, 2010)

The conjecture holds for (Δ, Δ') .

Tools: Link to cluster algebras, additive categorification using the cluster category constructed from quiver representations.

Link to cluster algebras: Square product guivers

Example: $A_4 \square A_3$

 $\mu_+=$ sequence of mutations at all \circ . $\mu_-=$ sequence of mutations at all \bullet .

Key Lemma

The conjecture holds iff the sequence of seeds

$$\cdots \xrightarrow[\mu_{-}]{} S_0 \xrightarrow[\mu_{+}]{} S_1 \xrightarrow[\mu_{-}]{} S_2 \xrightarrow[\mu_{+}]{} \cdots$$

of the (principal extension of the) square product $Q = \Delta \Box \Delta'$ is periodic of period dividing 2(h + h').

Combinatorial periodicity

Theorem

Let D be any quiver containing $\Delta \Box \Delta'$ as a full subquiver. Then

$$(\mu_+\mu_-)^{h+h'}(D)=D.$$

A local and an exotic example

local:
$$(A_5, A_4)$$
: $h + h' = 6 + 5 = 11$

exotic:
$$(E_6, E_7)$$
: $h + h' = 12 + 18 = 30$

Preliminaries: The Dynkin diagrams
Definitions: quiver mutation, cluster algebras
Application in Lie theory, after B. Leclerc et al.
Application to discrete dynamical systems: periodicity

Summary

- Cluster algebras are commutative algebras with a rich combinatorial structure.
- They have important applications in Lie theory, in discrete dynamical systems and in many other subjects.
- Do not forget to google 'quiver mutation'!

References

- [1] Frédéric Chapoton, Enumerative properties of generalized associahedra, Sém. Lothar. Combin. **51** (2004/05), Art. B51b, 16 pp. (electronic).
- [2] Frédéric Chapoton, Sergey Fomin, and Andrei Zelevinsky, *Polytopal realizations of generalized associahedra*, Canad. Math. Bull. **45** (2002), no. 4, 537–566, Dedicated to Robert V. Moody.
- [3] Philippe Di Francesco and Rinat Kedem, Q-systems as cluster algebras. II. Cartan matrix of finite type and the polynomial property, Lett. Math. Phys. 89 (2009), no. 3, 183–216.
- [4] G. Dupont, Positivity in coefficient-free rank two cluster algebras, Electron. J. Combin. 16 (2009), no. 1, Research Paper 98, 11.
- [5] Vladimir V. Fock and Alexander B. Goncharov, Cluster ensembles, quantization and the dilogarithm, Annales scientifiques de l'ENS 42 (2009), no. 6, 865–930.
- [6] Sergey Fomin, Michael Shapiro, and Dylan Thurston, Cluster algebras and triangulated surfaces. I. Cluster complexes, Acta Math. 201 (2008), no. 1, 83– 146.
- [7] Sergey Fomin and Andrei Zelevinsky, *Cluster algebras. I. Foundations*, J. Amer. Math. Soc. **15** (2002), no. 2, 497–529 (electronic).
- [8] _____, Cluster algebras. II. Finite type classification, Invent. Math. 154 (2003), no. 1, 63–121.
- [9] _____, Y-systems and generalized associahedra, Ann. of Math. (2) 158 (2003), no. 3, 977–1018.
- [10] Edward Frenkel and András Szenes, Thermodynamic Bethe ansatz and dilogarithm identities. I, Math. Res. Lett. 2 (1995), no. 6, 677–693.
- [11] Christof Geiß, Bernard Leclerc, and Jan Schröer, Cluster structures on quantum coordinate rings, arXive: 1104.0531 [math.RT].
- [12] _____, Rigid modules over preprojective algebras, Invent. Math. **165** (2006), no. 3, 589–632.
- [13] Michael Gekhtman, Michael Shapiro, and Alek Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167, American Mathematical Society, Providence, RI, 2010.
- [14] F. Gliozzi and R. Tateo, Thermodynamic Bethe ansatz and three-fold triangulations, Internat. J. Modern Phys. A 11 (1996), no. 22, 4051–4064.
- [15] André Henriques, A periodicity theorem for the octahedron recurrence, J. Algebraic Combin. **26** (2007), no. 1, 1–26.
- [16] David Hernandez and Bernard Leclerc, Cluster algebras and quantum affine algebras, arXiv:0903.1452v1 [math.QA].
- [17] Masaki Kashiwara, Bases cristallines, C. R. Acad. Sci. Paris Sér. I Math. 311 (1990), no. 6, 277–280.
- [18] Bernhard Keller, Cluster algebras, quiver representations and triangulated categories, arXive:0807.1960 [math.RT].
- [19] _____, The periodicity conjecture for pairs of Dynkin diagrams, arXiv:1001.1531.
- [20] Maxim Kontsevich and Yan Soibelman, Stability structures, Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
- [21] A. Kuniba and T. Nakanishi, Spectra in conformal field theories from the Rogers dilogarithm, Modern Phys. Lett. A 7 (1992), no. 37, 3487–3494.
- [22] Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, Functional relations in solvable lattice models. I. Functional relations and representation theory, Internat. J. Modern Phys. A 9 (1994), no. 30, 5215–5266.

- [23] Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, T-systems and y-systems in integrable systems, Journal of Physics A: Mathematical and Theoretical 44 (2011), no. 10, 103001.
- [24] Kyungyong Lee and Ralf Schiffler, A combinatorial formula for rank 2 cluster variables, arXive:1106.0952 [math.CO].
- [25] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), no. 2, 447–498.
- [26] Gregg Musiker, A graph theoretic expansion formula for cluster algebras of type B_n and D_n , arXiv:0710.3574v1 [math.CO], to appear in the Annals of Combinatorics.
- [27] Gregg Musiker, Ralf Schiffler, and Lauren Williams, *Positivity for cluster algebras from surfaces*, arXiv:0906.0748.
- [28] Kentaro Nagao, Donaldson-Thomas theory and cluster algebras, arX-ive:1002.4884 [math.AG].
- [29] Hiraku Nakajima, Quiver varieties and cluster algebras, arXiv:0905.0002v3 [math.QA].
- [30] Fan Qin, Quantum cluster variables via Serre polynomials, math.RT/1004.4171.
- [31] F. Ravanini, A. Valleriani, and R. Tateo, *Dynkin TBAs*, Internat. J. Modern Phys. A 8 (1993), no. 10, 1707–1727.
- [32] András Szenes, Periodicity of Y-systems and flat connections, Lett. Math. Phys. 89 (2009), no. 3, 217–230.
- [33] Alexandre Yu. Volkov, On the periodicity conjecture for Y-systems, Comm. Math. Phys. **276** (2007), no. 2, 509–517.
- [34] Al. B. Zamolodchikov, On the thermodynamic Bethe ansatz equations for reflectionless ADE scattering theories, Phys. Lett. B **253** (1991), no. 3-4, 391–394.