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Hermitian eigenvalue problem

For any n× n Hermitian matrix A, let λA = (λ1 ≥ · · · ≥ λn) be its
set of eigenvalues written in descending order. (Recall that all
the eigenvalues of a Hermitian matrix are real.) We recall the
following classical problem.

Problem 1
(The Hermitian eigenvalue problem) Given two n-tuples of
nonincreasing real numbers: λ = (λ1 ≥ · · · ≥ λn) and
µ = (µ1 ≥ · · · ≥ µn), determine all possible ν = (ν1 ≥ · · · ≥ νn)
such that there exist Hermitian matrices A,B,C with
λA = λ, λB = µ, λC = ν and C = A + B.

Said imprecisely, the problem asks the possible eigenvalues of
the sum of two Hermitian matrices with fixed eigenvalues.
A conjectural solution of the above problem was given by Horn
in 1962.



For any positive integer r < n, inductively define the set Sn
r as

the set of triples (I, J,K ) of subsets of [n] := {1, . . . ,n} of
cardinality r such that∑

i∈I

i +
∑
j∈J

j = r(r + 1)/2 +
∑
k∈K

k (1)

and for all 0 < p < r and (F ,G,H) ∈ Sr
p the following inequality

holds: ∑
f∈F

if +
∑
g∈G

jg ≤ p(p + 1)/2 +
∑
h∈H

kh. (2)



Now, Horn conjectured the following.

Conjecture 2
(Horn) A triple λ,µ,ν occurs as eigenvalues of Hermitian n × n
matrices A,B,C respectively such that C = A + B if and only if

n∑
i=1

νi =
n∑

i=1

λi +
n∑

i=1

µi ,

and for all 1 ≤ r < n and all triples (I, J,K ) ∈ Sn
r , we have∑

k∈K

νk ≤
∑
i∈I

λi +
∑
j∈J

µj .

Of course, the first identity is nothing but the trace identity.



Remark. Even though this problem goes back to the nineteenth
century, the first significant result was given by H. Weyl in 1912:

νi+j−1 ≤ λi + µj whenever i + j − 1 ≤ n.

Exercise. Show that for n = 2, the trace identity and the Weyl
inequality are sufficient.
K. Fan found some other inequalities in 1949 followed by Lidskii
(1950). The full set of inequalities given above are due to Horn.
Horn’s above conjecture was settled in the affirmative by
combining the work of Klyachko (1998) with the work of
Knutson-Tao (1999) on the ‘saturation’ problem. The above
system of inequalities is overdetermined. Belkale (2001) came
up with a subset of the above set of inequalities which forms an
irredundant system of inequalities as proved by
Knutson-Tao-Woodward (2004).



Generalization of the eigenvalue problem

Now we will discuss a generalization of the above Hermitian
eigenvalue problem to an arbitrary complex semisimple group.
(A further generalization to any reductive group follows fairly
easily from the semisimple case.)

So, let G be a connected, simply-connected, semisimple
complex algebraic group. We fix a Borel subgroup B, a maximal
torus H, and a maximal compact subgroup K . We denote their
Lie algebras by the corresponding Gothic characters: g, b, h, k
respectively. Let R+ be the set of positive roots (i.e., the set of
roots of b) and let ∆ = {α1, . . . , α`} ⊂ R+ be the set of simple
roots. There is a natural homeomorphism δ : k/K → h+, where
K acts on k by the adjoint representation and
h+ := {h ∈ h : αj(h) ≥ 0} (for all the simple roots αj ) is the
positive Weyl chamber in h. The inverse map δ−1 takes any
h ∈ h+ to the K -conjugacy class of ih.



For any positive integer s, define the set Γ(s) :=

{(h1, . . . ,hs) ∈ hs
+ | ∃(k1, . . . , ks) ∈ ks:

s∑
j=1

kj = 0 and δ(kj) = hj∀j = 1, . . . , s}.

Following is the generalization of the Hermitian eigenvalue
problem to an arbitrary G. (The case G = Gl(n) and s = 3
specializes to the problem discussed in the beginning if we
replace C by −C.)



Problem 3
Describe the set Γ(s).
By virtue of the convexity result in symplectic geometry, the
subset Γ(s) ⊂ hs

+ is a convex polyhedral cone (defined by
certain inequalities). The aim is to find these inequalities
describing Γ(s) explicitly.

Before we can give a solution of the problem, we need some
more notation.



Let P ⊃ B be a standard parabolic subgroup with Lie algebra p
and let l be its unique Levi component containing the Cartan
subalgebra h. Let ∆(P) ⊂ ∆ be the set of simple roots
contained in the set of roots of l. For any 1 ≤ j ≤ `, define the
element xj ∈ h by

αi(xj) = δi,j , ∀ 1 ≤ i ≤ `. (3)

Let WP be the Weyl group of P (which is, by definition, the Weyl
Group of the Levi component L), then in each coset of W/WP
we have a unique member w of minimal length. Let W P be the
set of the minimal length representatives in the cosets of
W/WP .
For any w ∈W P , define the (shifted) Schubert cell:

ΛP
w := w−1BwP ⊂ G/P.



Then, it is a locally closed subvariety of G/P isomorphic with
the affine space A`(w), `(w) being the length of w . Its closure is
denoted by Λ̄P

w , which is an irreducible (projective) subvariety of
G/P of dimension `(w). Let µ(Λ̄P

w ) denote the fundamental
class of Λ̄P

w considered as an element of the singular homology
with integral coefficients H2`(w)(G/P,Z) of G/P. Then, from the
Bruhat decomposition, the elements {µ(Λ̄P

w )}w∈W P form a
Z-basis of H∗(G/P,Z). Let {εPw}w∈W P be the dual basis of the
singular cohomology with integral coefficients H∗(G/P,Z), i.e.,
for any v ,w ∈W P we have

εPv (µ(Λ̄P
w )) = δv ,w .

Given a standard maximal parabolic subgroup P, let ωP denote
the corresponding fundamental weight, i.e., ωP(α∨i ) = 1, if
αi ∈ ∆ \∆(P) and 0 otherwise, where α∨i is the fundamental
coroot corresponding to the simple root αi .



Deformation of Cup Product in H∗(G/P)

Let P be any standard parabolic subgroup of G. Write the
standard cup product in H∗(G/P,Z) in the {εPw} basis as
follows:

[εPu ] · [εPv ] =
∑

w∈W P

dw
u,v [εPw ]. (4)

Introduce the indeterminates τi for each αi ∈ ∆ \∆(P) and
define a deformed cup product � as follows:

εPu � εPv =
∑

w∈W P

( ∏
αi∈∆\∆(P)

τ
(u−1ρ+v−1ρ−w−1ρ−ρ)(xi )
i

)
dw

u,vε
P
w ,

where ρ is the (usual) half sum of positive roots of g. This
deformed product was introduced by Belkale-Kumar (2006).
This product should not be confused with the small quantum
cohomology product of G/P.



By using the Geometric Invariant Theory, one proves that
whenever dw

u,v is nonzero, the exponent of τi in the above is a
nonnegative integer. Moreover, the product � is associative
(and clearly commutative).

The cohomology algebra of G/P obtained by setting each
τi = 0 in (H∗(G/P,Z)⊗ Z[τi ],�) is denoted by
(H∗(G/P,Z),�0). Thus, as a Z-module, this is the same as the
singular cohomology H∗(G/P,Z) and under the product �0 it is
associative (and commutative). Moreover, it continues to satisfy
the Poincaré duality. Further, it can be proved that for a
cominuscule maximal paparbolic P (i.e., the simple root
αP ∈ ∆ \∆(P) occurs with coefficient one in the highest root θ
of R+), the product �0 coincides with the standard cup product.

Now we are ready to state the main result on solution of the
eigenvalue problem for any G stated above.



Theorem 4
(due to Belkale-Kumar, 2006) Let (h1, . . . ,hs) ∈ hs

+. Then, the
following are equivalent:
(a) (h1, . . . ,hs) ∈ Γ(s).
(b) For every standard maximal parabolic subgroup P in G and
every choice of s-tuples (w1, . . . ,ws) ∈ (W P)s such that

εPw1
�0 · · · �0 ε

P
ws = εPo ∈

(
H∗(G/P,Z),�0

)
,

the following inequality holds:

ωP(
s∑

j=1

w−1
j hj) ≥ 0,

where εPo is the (top) fundamental class (which is the oriented
integral generator of H top(G/P,Z)).
These set of inequalities are now generally referred to as the
Belkale-Kumar set of inequalities.



The ‘explicit’ determination of Γ(s) via the above Theorem
hinges upon understanding the product �0 in H∗(G/P) in the
Schubert basis, for all the maximal parabolic subgroups P.
Clearly, the product �0 is easier to understand than the usual
cup product (which is the subject matter of Schubert Calculus)
since in general ‘many more’ terms in the product �0 in the
Schubert basis drop out.
The cone Γ(3) is quite explicitly determined for any simple G:

I of rank 2 by Kapovich-Leeb-Millson (2009)
I any simple G of rank 3 by Kumar-Leeb-Millson (2003), and
I for G = Spin(8) by Kapovich-Kumar-Millson (2009).

It has 50,102,102,306 facets for G of type A3,B3,C3,D4
respectively.



Remark. The above theorem specializes to a solution of the
Hermitian eigenvalue problem if we take G = Gl(n). In this
case, every maximal parabolic subgroup P is minuscule and
hence, as mentioned earlier, the deformed product �0 in
H∗(G/P) coincides with the standard cup product. In this case,
the above theorem was obtained by Klyachko (1998) with a
refinement by Belkale (2001). (The set of inequalities (b) for
G = Gl(n) in general is much smaller than the set of Horn
inequalities discussed earlier. Further, as shown by
Knutson-Tao-Woodward (2004), the set of inequalities (b) is an
irredundant system for G = Gl(n). In fact, as we will see later
that it is true for any G.) If we replace the product �0 in (b) by
the standard cup product, then the equivalence of (a) and (b)
for general G was proved by Kapovich-Leeb-Millson (2009)
following an analogous slightly weaker result proved by
Berenstein-Sjamaar (2000).



It may be mentioned that replacing the product �0 in (b) by the
standard cup product, we get far more inequalities for groups
other than Gl(n) (or SL(n)). For example, as shown by
Kumar-Leeb-Millson (2003), for G of type B3 or C3, the
standard cup product gives rise to 135 inequalities, whereas
the new product gives only 102 inequalities.



My interest in the eigenvalue problem stems from the problem
of tensor product decomposition. Specifically, for any dominant
integral weight λ ∈ h∗ (i.e., λ(α∨i ) ∈ Z+ for each simple coroot
α∨i ), let V (λ) be the finite dimensional irreducible G-module
with highest weight λ. Given dominant integral weights
λ1, . . . , λs ∈ h∗, a classical and a very central problem is to
determine which irreducible representations V (ν) occur in the
tensor product V (λ1)⊗ · · · ⊗ V (λs)? By taking the tensor
product of V (λ1)⊗ · · · ⊗ V (λs) with the dual representation
V (ν)∗, (and replacing s by s + 1) we can reformulate the above
question more symmetrically as follows.

Problem 5
Determine the set of s-tuples (λ1, . . . , λs) of dominant integral
weights such that the tensor product V (λ1)⊗ · · · ⊗ V (λs) has a
nonzero G-invariant subspace.



This problem in general seems quite hard. So, let us pose the
following weaker saturated tensor product problem.

Problem 6
Determine the set Γ̂(s) of s-tuples (λ1, . . . , λs) of dominant
rational weights such that the tensor product
V (Nλ1)⊗ · · · ⊗ V (Nλs) has a nonzero G-invariant subspace for
some positive integer N, where we call a weight a dominant
rational weight if its some positive integral multiple is a
dominant integral weight.
The above saturated tensor product problem is parallel to the
eigenvalue problem because of the following result. Let
D := {λ ∈ h∗ : λ(α∨i ) ∈ R+∀i} be the set of dominant real
weights. Then, under the Killing form, we have an identification
h+ → D. Under this identification, xi corresponds with
2ωi/〈αi , αi〉, where ωi is the i-th fundamental weight.



The following result due to Sjamaar (1998) (proved by using the
moment map in symplectic geometry) shows that the
eigenvalue problem coincides with the saturated tensor product
problem.

Proposition 7
Under the identification of h+ with D (and hence of hs

+ with Ds),
Γ(s) corresponds to the closure of Γ̂(s). In fact, Γ̂(s) consists of
the rational points of the image of Γ(s).
The following theorem is the main result on the saturated
tensor product decomposition parallel to the solution of the
eigenvalue problem.



Theorem 8
(due to Belkale-Kumar, 2006) Let (λ1, . . . , λs) be a s-tuple of
dominant integral weights. Then, the following are equivalent:

(i) For some integer N > 0, the tensor product
V (Nλ1)⊗ · · · ⊗ V (Nλs) has a nonzero G-invariant
subspace.

(ii) For every standard maximal parabolic subgroup P in G and
every choice of s-tuples (w1, . . . ,ws) ∈ (W P)s such that

εPw1
�0 · · · �0 ε

P
ws = εPo ∈

(
H∗(G/P,Z),�0

)
,

the following inequality holds:

IP
(w1,...,ws) :

s∑
j=1

λj(wjxiP ) ≥ 0, (5)

where αiP is the simple root in ∆ \∆(P).



I have said nothing so far about the proofs, nor can I say much
for lack of time. But let me mention that Theorem 4 on the
eigenvalue problem for an arbitrary G follows from Theorem 8
and Proposition 7. The proof of Theorem 8 makes essential
use of the Geometric Invariant Theory, specifically the
Hilbert-Mumford criterion for semistability and Kempf’s
maximally destabilizing one parameter subgroups and Kempf’s
parabolic subgroups associated to unstable points. In addition,
the notion of Levi-movability (defined below) plays a
fundamental role in the proofs.
Also, the new product �o in the cohomology of the flag variety
G/P is intimately connected with the Lie algebra cohomology of
the nil-radical of the parabolic subalgebra p.



Here is the definition of Levi-movability: Let P be any standard
parabolic subgroup of G with Levi component L. Let
w1, . . . ,ws ∈W P be such that

s∑
j=1

codim ΛP
wj

= dim G/P. (6)

This of course is equivalent to the condition:

s∑
j=1

`(wj) = (s − 1) dim G/P. (7)

Then, the s-tuple (w1, . . . ,ws) is called Levi-movable for short
L-movable if, for generic (l1, . . . , ls) ∈ Ls, the intersection
l1Λw1 ∩ · · · ∩ lsΛws is transverse at e.



The following result due to Ressayre (2010) shows that the
system of inequalities given by the above Theorem is an
irredundant system for any G.

Theorem 9
The Belkale-Kumar set of inequalities provided by the (ii)-part
of the above theorem is an irredundant system of inequalities
describing the rational cone Γ̂(s) inside Ds, i.e., the
hyperplanes given by the equality in IP

(w1,...,ws) are precisely

those facets of the cone Γ̂(s) which intersect the interior of Ds.



Saturation Problem

The saturation problem aims at connecting the tensor product
semigroup T (s) = TG(s) (consisting of the s-tuples (λ1, . . . , λs)
of dominant integral weights such that the tensor product
V (λ1)⊗ · · · ⊗ V (λs) has a nonzero G-invariant) with the
saturated tensor product semigroup Γ̂(s)Z (consisting of the
s-tuples (λ1, . . . , λs) of dominant integral weights such that the
tensor product V (Nλ1)⊗ · · · ⊗ V (Nλs) has a nonzero
G-invariant for some N > 0).



We begin with the following definition. We take s = 3 as this is
the most relevant case to the tensor product decomposition.

Definition 10
An integer d ≥ 1 is called a saturation factor for G, if for any
(λ, µ, ν) ∈ Γ̂(3)Z such that λ+ µ+ ν ∈ Q, then
(dλ,dµ,dν) ∈ T (3), where Q is the root lattice of G.
Of course, if d is a saturation factor then so is its any multiple.

If d = 1 is a saturation factor for G, we say that the saturation
property holds for G.



The saturation theorem of Knutson-Tao (1999) mentioned
earlier, proved by using their ‘honeycomb model’ asserts the
following. Other proofs of their result are given by
Derksen-Weyman (2000), Belkale (2006) and Kapovich-Millson
(2008).

Theorem 11
The saturation property holds for G = SL(n).

The following general result (though not optimal) on saturation
factor is obtained by Kapovich-Millson by using the geometry of
geodesics in Euclidean buildings and Littelmann’s path model.



Theorem 12
(Kapovich-Millson, 2008) For any connected simple G, d = k2

g

is a saturated factor, where kg is the least common multiple of
the coefficients of the highest root θ of the Lie algebra g of G
written in terms of the simple roots {α1, . . . , α`}.

Observe that the value of kg is 1 for g of type A`(` ≥ 1); it is 2
for g of type B`(` ≥ 2),C`(` ≥ 3),D`(` ≥ 4); and it is 6, 12, 60,
12, 6 for g of type E6,E7,E8,F4,G2 respectively.

Kapovich-Millson determined TG(3) explicitly for G = Sp(4) and
G2 (2006). In particular, from their description, the following
theorem follows easily.



Theorem 13
The saturation property does not hold for either G = Sp(4) or
G2. Moreover, 2 is a saturation factor (and no odd integer d is a
saturation factor) for Sp(4), whereas both of 2,3 are saturation
factors for G2 (and hence any integer d > 1 is a saturation
factor for G2).



Kapovich-Millson made the following very interesting conjecture
(2006):

Conjecture 14
If G is simply-laced, then the saturation property holds for G.

Apart from G = SL(n), the only other simply-connected, simple,
simply-laced group G for which the above conjecture is known
so far is G = Spin(8), proved by Kapovich-Kumar-Millson
(2009) by explicit calculation using the Belkale-Kumar set of
inequalities.



Finally, we have the following improvement of the general
saturatuion Theorem due to Kapovich-Millson applied to the
groups SO(2`+ 1) and Sp(2`).

Theorem 15
(Belkale-Kumar, 2010) For the groups SO(2`+ 1) and Sp(2`), 2
is a saturation factor.
(Observe that the general result of Kapovich-Millson gives a
saturation factor of 4 in these cases.)
The proof of the above theorem relies on the following theorem
due to Belkale-Kumar (2010).

Theorem 16
Let (λ1, . . . , λs) ∈ TSL(2`)(s). Then, (λ1

C , . . . , λ
s
C) ∈ T(Sp(2`))(s),

where λj
C is the restriction of λj to the maximal torus of Sp(2`).

A similar result is true for Sp(2`) replaced by SO(2`+ 1).



Belkale-Kumar made the following conjecture:

Let G be a simply-connected, simple complex algebraic group
and let σ be a diagram automorphism of G with fixed subgroup
K .

Conjecture 17
Let (λ1, . . . , λs) ∈ TG(s). Then, (λ1

K , . . . , λ
s
K ) ∈ TK (s), where λj

K
is the restriction of λj to the maximal torus of K .
(Observe that λK is dominant for K for any dominant character
λ for G with respect to the Borel subgroup BK := Bσ of K .)



We also mention the following ‘rigidity’ result (conjectured by
Fulton) due to Knutson-Tao-Woodward (2004) proved by
combinatorial methods. There are now geometric poofs of the
theorem by Belkale (2007) and Ressayre (2009).

Theorem 18
Let G = SL(n) and let λ, µ, ν ∈ Λ+. If [V (λ)⊗ V (µ)⊗ V (ν)]G is
one-dimensional then so is [V (Nλ)⊗V (Nµ)⊗V (Nν)]G, for any
N ≥ 1.
The direct generalization of this theorem for other groups is, in
general, false. But, a certain cohomological reinterpretation of
the theorem remains true for any G as proved by
Belkale-Kumar-Ressayre (2010).



Remark 19
We mention the classical Littlewood-Richardson theorem for
the tensor product decomposition of irreducible polynomial
representations of GL(n) and its generalization by Littelmann
for any G via his LS path model.

In addition, we mention that Berenstein-Zelevinsky determined
the tensor product multiplicities as the number of lattice points
in some convex polytope.

For the tensor product multiplicities, there is an approach by
Lusztig via his canonical bases. Similarly, there is an approach
by Kashiwara via his crystal bases. For lack of time, we do not
give the details.



Final Remark. I do not have time to talk about the multiplicative
analogue of the eigenvalue problem.



DANKE SCHÖN!


